Skip to main content

Resistive Random Access Memory Device Physics and Array Architectures

  • Chapter
  • First Online:
Emerging Non-volatile Memory Technologies

Abstract

Resistive random-access memories (RRAM) has garnered much interest in recent decades as a strong candidate to replace conventional memories like NAND flash, SRAM and DRAM. In contrast to the electrical charge changes in flash memories to define memory states, RRAM devices rely on non-volatile, reversible resistance changes within the device, hence its name. Apart from its superior performance: low power, high speed, high endurance, its simple two-terminal metal-insulator-metal (MIM) structure allows for a more scalable design and simpler fabrication processes. However, the RRAM is not without its problems and challenges. The resistive switching property of RRAM is inherently stochastic, resulting in variations between memory states, which could result in bit errors if unaccounted for. Also, the two-terminal RRAM requires a select device to prevent wrong selection of devices in an array. This chapter focuses on the redox-RRAM, where resistance changes take place through redox reactions within the insulator layer of the MIM, and will describe the basic operating principles of RRAM as well as various RRAM architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, S. Tanaka, A new flash E2PROM cell using triple polysilicon technology, in Proceedings of the 1984 International Electron Devices Meeting, pp. 464–467 (1984)

    Google Scholar 

  2. V.N. Kynett, A. Baker, M.L. Fandrich, G.P. Hoekstra, O. Jungroth, An in-system reprogrammable 32 K x 8 CMOS flash memory. IEEE J. Solid-State Circuits 23(5), 1157–1163 (1988)

    Article  ADS  Google Scholar 

  3. S. Lai, Non-volatile memory technologies: the quest for ever lower cost, in Proceedings of the 2008 International Electron Devices Meeting (2008)

    Google Scholar 

  4. H. Akinaga, H. Shima, Resistive random access memory (ReRAM) based on metal oxide. Proc. IEEE 98(12), 2237–2251 (2010)

    Article  Google Scholar 

  5. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(21), 2632–2663 (2009)

    Article  Google Scholar 

  6. T. Prodromakis, C. Toumazou, L. Chua, Two centuries of memristors. Nat. Mater. 11(6), 478–481 (2012)

    Article  ADS  Google Scholar 

  7. T.W. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33(9), 2669 (1962)

    Article  ADS  Google Scholar 

  8. G. Dearnaley, A. Stoneham, D. Morgan, Electrical phenomena in amorphous oxide films. Reports Prog. Phys. 33(3), 1129 (1970)

    Article  ADS  Google Scholar 

  9. L.O. Chua, Memristor—The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  10. A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997)

    Article  ADS  Google Scholar 

  11. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77(1), 139 (2000)

    Article  ADS  Google Scholar 

  12. M.N. Kozicki, M. Yun, L. Hilt, A. Singh, Applications of programmable resistance changes in metal-doped chalcogenides, in Proceedings of the Symposium Solid State Ion Devices, no. 1, p. 849 (1999)

    Google Scholar 

  13. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(12), 28–35 (2008)

    ADS  Google Scholar 

  14. Panasonic Starts World’s First Mass Production of ReRAM Mounted Microcomputers, Panasonic Corporation, August 2013. [Online]. Available: https://news.panasonic.com/global/press/data/2013/07/en130730-2/en130730-2.html. Accessed 18 Nov 2018

  15. T.-Y. Liu, T.H. Yan, R. Scheuerlein, Y. Chen, J.K. Lee, G. Balakrishnan, G. Yee, H. Zhang, A 130.7-mm2 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology. IEEE J. Solid State Circuits 49, 140–153 (2014)

    Article  ADS  Google Scholar 

  16. R. Mertens, Digitimes, 2017. [Online]. Available: http://www.digitimes.com/newregister/join.asp?view=Article&DATEPUBLISH=2017/06/05&PAGES=PB&SEQ=200. Accessed 18 Nov 2018

  17. M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W.X. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, 2-Stack 1D-1R crosspoint structure with oxide diodes as switching elements for high density resistance RAM applications, in 2007 International Electron Devices Meeting (2007)

    Google Scholar 

  18. C. Xu, X. Dong, N.P. Jouppi, Y. Xie, Design implications of memristor-based RRAM, in DATE (IEEE, New York, 2011)

    Google Scholar 

  19. M. Hu, H. Li, Q. Wu, G. S. Rose, Hardware realization of BSB recall function using memristor crossbar arrays, Proceedings of the Design Automation Conference (DAC), pp. 498–503 (2012)

    Google Scholar 

  20. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)

    Article  ADS  Google Scholar 

  21. P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, W.D. Lu, Sparse coding with memristor networks. Nature Nanotechnol. 12, 784–789 (2017)

    Article  Google Scholar 

  22. P. Yao, H. Wu, B. Gao, S.B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H.-S.P. Wong, H. Qian, Face classification using electronic synapses. Nature Commun. 8, 15199 (2017)

    Article  ADS  Google Scholar 

  23. S. Yu, Binary neural network with 16 Mb RRAM macro chip for classification and online training, in IEDM Technical Digest (2016)

    Google Scholar 

  24. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal–Oxide RRAM, in Proceedings of the IEEE, pp. 1951–1970 (2012)

    Google Scholar 

  25. D.S. Jeong, R. Thomas, R. Katiyar, J. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)

    Article  ADS  Google Scholar 

  26. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  ADS  Google Scholar 

  27. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    Article  ADS  Google Scholar 

  28. K. Shibuya, R. Dittmann, S. Mi, R. Waser, Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films. Adv. Mater. 22, 411–414 (2010)

    Article  Google Scholar 

  29. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008)

    Article  Google Scholar 

  30. V.Y.-Q. Zhuo, Y. Jiang, M.H. Li, E.K. Chua, Z. Zhang, J.S. Pan, R. Zhao, L.P. Shi, Y. Yang, T.C. Chong, J. Robertson, Band alignment between Ta2O5 and metals for resistive random access memory. Appl. Phys. Lett. 102, 062106 (2013)

    Article  ADS  Google Scholar 

  31. V.Y.-Q. Zhuo, M.-H. Li, Y. Jiang, Electrode effects on the current conduction mechanisms in TaOx-based RRAM, in IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (2015)

    Google Scholar 

  32. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  33. J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L.D. Kilcoyne, G. Medeiros-Ribeiro, R.S. Williams, Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22(32), 3573–3577 (2010)

    Article  Google Scholar 

  34. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22(28), 289502 (2011)

    Article  Google Scholar 

  35. W. Lu, D.S. Jeong, M. Kozicki, R. Waser, Electrochemical metallization cells—blending nanoionics into nanoelectronics?, MRS Bull. 37(2), 124–130 (2012)

    Google Scholar 

  36. S. Yu, X. Guan, H.-S.P. Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model. Appl. Phys. Lett. 99, 063507 (2011)

    Article  ADS  Google Scholar 

  37. Y.-M. Kim, J.-S. Lee, Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 104, 114115 (2008)

    Article  ADS  Google Scholar 

  38. W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, M.-J. Tsai, Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92, 022110 (2008)

    Article  ADS  Google Scholar 

  39. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98(3), 033715 (2005)

    Article  ADS  Google Scholar 

  40. F. Miao, J.P. Strachan, J.J. Yang, M.X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633 (2011)

    Article  Google Scholar 

  41. V.Y.-Q. Zhuo, M. Li, Y. Guo, W. Wang, Y. Yang, Y. Jiang, J. Robertson, CMOS compatible electrode materials selection in oxide-based memory devices. J. Appl. Phys. 120, 024504 (2016)

    Article  ADS  Google Scholar 

  42. C.H. Wang, Y.-H. Tsai, K.-C. Lin, M.-F. Chang, Y.-C. King, C.-J. Lin, S.-S. Sheu, Y.-S. Chen, H.-Y. Lee, F.T. Chen, M.-J. Tsai, Three-dimensional 4F2 ReRAM cell with CMOS logic compatible process, in IEDM Tech Digest, pp. 664–667 (2010)

    Google Scholar 

  43. S. Privitera, G. Bersuker, S. Lombardo, C. Bongiorno, D.C. Gilmer, Conductive filament structure in HfO2 resistive switching memory devices. Solid-State Electron. 111, 161 (2015)

    Article  ADS  Google Scholar 

  44. Z.X. Chen, Z. Fang, Y. Wang, Y. Yang, A. Kamath, X.P. Wang, N. Singh, G.-Q. Lo, D.-L. Kwong, Y.H. Wu, Impact of Ni concentration on the performance of Ni-Silicide/HfO2/TiN resistive RAM (RRAM) cells. J. Electron. Mater. 43(11), 4193–4198 (2014)

    Article  ADS  Google Scholar 

  45. X.A. Tran, B. Gao, J.F. Kang, X. Wu, L. Wu, Z. Fang, Z.R. Wang, K.L. Pey, Y.C. Yeo, A.Y. Du, M. Liu, B.Y. Nguyen, M.F. Li, H.Y. Yu, Self-Rectifying and forming-free unipolar HfOx based-high performance RRAM built by fab-available material, in IEEE IEDM Technical Digest, pp. 713–716 (2011)

    Google Scholar 

  46. D. Lee, H. Choi, H. Sim, D. Choi, Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. Electron Device Lett. 26(10), 719–721 (2005)

    Article  ADS  Google Scholar 

  47. H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Ionic doping effect in ZrO2 resistive switching memory. Appl. Phys. Lett. 96, 123502 (2010)

    Google Scholar 

  48. X. Sun, B. Sun, L. Liu, N. Xu, X. Liu, R. Han, J. Kang, G. Xiong, T.P. Ma, Resistive switching in CeOx films for nonvolatile memory application. IEEE Electron Device Lett. 30(4), 334–336 (2009)

    Article  ADS  Google Scholar 

  49. T.-M. Pan, C.-H. Lu, Switching behavior in rare-earth films fabricated in full room temperature. IEEE Trans Electr. Devices 59(4), 956–961 (2012)

    Article  ADS  Google Scholar 

  50. W. Shen, R. Dittmann, U. Breuer, R. Waser, Improved endurance behavior of resistive switching in (Ba, Sr)TiO3 thin films with W top electrode. Appl. Phys. Lett. 93, 222102 (2008)

    Article  ADS  Google Scholar 

  51. X. Chen, H. Zhang, K. Ruan, W. Shi, Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates. J. Alloys Compd. 529, 108–112 (2012)

    Article  Google Scholar 

  52. S.Q. Liu, N.J. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76(19), 2749–2751 (2000)

    Article  ADS  Google Scholar 

  53. X.P. Wang, Z. Fang, Z.X. Chen, A.R. Kamath, L.J. Tang, G.-Q. Lo, D.-L. Kwong, Ni-Containing Electrodes for Compact Integration of Resistive Random Access Memory With CMOS. IEEE Electron Device Lett. 34(4), 508–510 (2013)

    Article  ADS  Google Scholar 

  54. H.J. Hovel, J.J. Urgell, Switching and memory characteristics of ZnSe-Ge heterojunctions. J. Appl. Phys. 42(12), 5076–5083 (1971)

    Article  ADS  Google Scholar 

  55. N.G. Patel, Some observations on the switching and memory phenomena in ZnTe-Si. J. Mater. Sci. 21(6), 2097–2099 (1986)

    Article  ADS  Google Scholar 

  56. S. Gao, X. Yi, J. Shang, G. Liu, R.-W. Li, Organic and hybrid resistive switching materials and devices. Chem. Soc. Rev. pp. 1–35 (2018)

    Google Scholar 

  57. B.-H. Lee, H. Bae, H. Seong, D.-I. Lee, H. Park, Y.J. Choi, S.-G. Im, S.O. Kim, Y.-K. Choi, Direct observation of a carbon filament in water-resistant organic memory. ACS Nano 9(7), 7306–7313 (2015)

    Article  Google Scholar 

  58. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    Article  ADS  Google Scholar 

  59. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, L.X.-S., G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010)

    Google Scholar 

  60. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19(17), 2232–2235 (2007)

    Article  Google Scholar 

  61. Y.B. Nian, J. Strozier, N.J. Wu, X. Chen, A. Ignatiev, Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98(14), 146403 (2007)

    Article  ADS  Google Scholar 

  62. C. Baeumer, C. Schmitz, A. Marchewka, D.N. Mueller, R. Valenta, J. Hackl, N. Raab, S.P. Rogers, M.I. Khan, S. Nemsak, Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nat. Commun. 7, 12398 (2016)

    Article  ADS  Google Scholar 

  63. H. Du, C.-L. Jia, A. Koehl, J. Barthel, R. Dittmann, R. Waser, J. Mayer, Nanosized conducting filaments formed by atomic-scale defects in redox-based resistive switching memories. Chem. Mater. 29, 3164–3173 (2017)

    Article  Google Scholar 

  64. M. Sowinska, T. Bertaud, D. Walczyk, S. Thiess, M. Schubert, M. Lukosius, W. Drube, C. Walczyk, T. Schroeder, In-operando and non-destructive analysis of the resistive switching in the Ti/HfO2/TiN-based system by hard x-ray photoelectron spectroscopy. Appl. Phys. Lett. 101, 143501 (2012)

    Article  ADS  Google Scholar 

  65. U. Celano, J.O.D. Beeck, S. Clima, M. Luebben, P.M. Koenraad, L. Goux, I. Valov, W. Vandervorst, Direct probing of the dielectric scavenging-layer interface in oxide filamentary-based valence change memory. ACS Appl. Mater. Interfaces. 9, 10820–10824 (2017)

    Article  Google Scholar 

  66. G. Niu, M. Schubert, S. Sharath, P. Zaumseil, S. Vogel, C. Wenger, E. Hildebrandt, S. Bhupathi, E. Perez, L. Alff, Direct probing of the dielectric scavenging-layer interface in oxide filamentary-based valence change memory. Nanotechnology 28, 215702 (2017)

    Article  ADS  Google Scholar 

  67. D. Cooper, C. Baeumer, N. Bernier, A. Marchewka, C. La Torre, R.E. Dunin-Borkowski, S. Menzel, R. Waser, R. Dittmann, Anomalous resistance hysteresis in oxide ReRAM: oxygen evolution and reincorporation revealed by in situ TEM. Adv. Mater. 29, 1–8 (2017)

    Article  Google Scholar 

  68. J. Kwon, A.A. Sharma, C.-Y. Chen, A. Fantini, M. Jurczak, A.A. Herzing, J.A. Bain, Y.N. Picard, M. Skowronski, Transient thermometry and high-resolution transmission electron microscopy analysis of filamentary resistive switches. ACS Appl. Mater. Interfaces 8, 20176–20184 (2016)

    Article  Google Scholar 

  69. K.M. Kim, D.S. Jeong, C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22(25), 254002 (2011)

    Article  ADS  Google Scholar 

  70. D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104(12), 123716 (2008)

    Article  ADS  Google Scholar 

  71. J.J. Yang, F. Miao, M.D. Pickett, D.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20(21), 215201 (2009)

    Article  ADS  Google Scholar 

  72. J.-Y. Chen, C.-L. Hsin, C.-H.C.Y.-T.H.S.-J.L.-W.L.-J.C.C.-W. Huang, Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13, 3671–3677 (2013)

    Article  ADS  Google Scholar 

  73. D.B. Strukov, F. Alibart, R.S. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012)

    Google Scholar 

  74. S. Kumar, Z. Wang, X. Huang, N. Kumari, N. Davila, J.P. Strachan, D. Vine, A.D. Kilcoyne, Y. Nishi, R.S. Williams, Conduction channel formation and dissolution due to oxygen thermophoresis/diffusion in hafnium oxide memristors. ACS Nano 10, 11205–11210 (2016)

    Article  Google Scholar 

  75. Z.H. Tan, R. Yang, K. Terabe, X.B. Yin, X.D. Zhang, X. Guo, Synaptic metaplasticity realized in oxide memristive devices. Adv. Mater. 28 (2016)

    Google Scholar 

  76. Y. Yang, X. Zhang, L. Qin, Q. Zeng, X. Qiu, R. Huang, Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017)

    Article  ADS  Google Scholar 

  77. Y. Jiang, Q. Qi, R. Wang, J. Zhang, Q. Xue, C. Wang, C. Jiang, X. Qiu, Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate. ACS Nano 5, 6195–6201 (2011)

    Article  Google Scholar 

  78. S. Wang, R. Wang, X. Wang, D. Zhang, X. Qiu, Nanoscale charge distribution and energy band modification in defect-patterned graphene. Nanoscale 4, 2651–2657 (2012)

    Article  ADS  Google Scholar 

  79. J. Zhang, P. Chen, B. Yuan, W. Ji, Z. Cheng, X. Qiu, Real-space identification of intermolecular bonding with atomic force microscopy. Science 342, 611–614 (2013)

    Article  ADS  Google Scholar 

  80. S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. Adv. Funct. Mater. 21, 4487–4492 (2011)

    Article  Google Scholar 

  81. S. Yu, Y. Wu, H.-S.P. Wong, Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98, 103514 (2011)

    Article  ADS  Google Scholar 

  82. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. IEEE Trans. Electron Devices 56, 186 (2009)

    Article  ADS  Google Scholar 

  83. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, S. Spiga, M. Perego, M. Fanciulli, Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. IEDM Tech. Dig. 2, 775 (2007)

    Google Scholar 

  84. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 193 (2009)

    Article  ADS  Google Scholar 

  85. D. Panda, P.P. Sahu, Thermal assisted reset modelling in nickel oxide based unipolar resistive switching. J. Appl. Phys. 121, 204504 (2017)

    Article  ADS  Google Scholar 

  86. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.-K. Yoo, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5−x)/TaO(2−x) bilayer structures. Nat. Mater. 10, 625 (2011)

    Article  ADS  Google Scholar 

  87. H.Y. Lee, Y.S. Chen, P.S. Chen, P.Y. Gu, Y.Y. Hsu, S.M. Wang, W.H. Liu, C.H. Tsai, S.S. Sheu, P.C. Chiang, W.P. Lin, C.H. Lin, W.S. Chen, F.T. Chen, C.H. Lien, M.-J. Tsai, Evidence and solution of over-RESET problem for HfOx based resistive memory with sub-ns switching speed and high endurance (2010)

    Google Scholar 

  88. Y. Hirose, H. Hirose, Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47, 2767–2772 (1976)

    Article  ADS  Google Scholar 

  89. W.C. West, K. Sieradzki, B. Kardynal, M.N. Kozicki, Equivalent circuit modeling of the Ag vertical bar As0.24S0.36Ag0.40 vertical bar Ag system prepared by photodissolution of Ag. J. Electrochem. Soc. 145, 2971–2974 (1998)

    Article  ADS  Google Scholar 

  90. T. Hasegawa, K. Terabe, T. Tsuruoka, M. Aono, Atomic switch: Atom/ ion movement controlled devices for beyond von-Neumann computers. Adv. Mater. 24, 252–267 (2012)

    Article  Google Scholar 

  91. S.H. Jo, K.H. Kim, W. Lu, Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9, 496–500 (2009)

    Article  ADS  Google Scholar 

  92. U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, Study of multilevel programming in programmable metallization cell (PMC) memory. Electron Dev. IEEE Trans. on 56, 1040–1047 (2009)

    Article  ADS  Google Scholar 

  93. N. Banno, T. Sakamoto, T. Hasegawa, K. Terabe, M. Aono, Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 45, 3666–3668 (2006)

    Article  ADS  Google Scholar 

  94. I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11, 530–535 (2012)

    Article  ADS  Google Scholar 

  95. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Quantized conductance atomic switch. Nature 433, 47–50 (2005)

    Article  ADS  Google Scholar 

  96. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007)

    Article  ADS  Google Scholar 

  97. T. Kever, U. Bottger, C. Schindler, R. Waser, On the origin of bistable resistive switching in metal organic charge transfer complex memory cells. Appl. Phys. Lett. 91, 083506 (2007)

    Article  ADS  Google Scholar 

  98. C. Chen, Y.C. Yang, F. Zeng, F. Pan, Bipolar resistive switching in Cu/AlN/ Pt nonvolatile memory device. Appl. Phys. Lett. 97, 083502–083503 (2010)

    Article  ADS  Google Scholar 

  99. W.H. Guan, M. Liu, S.B. Long, Q. Liu, W. Wang, On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008)

    Article  ADS  Google Scholar 

  100. T. Liu, M. Verma, Y. Kang, M.K. Orlowski, Coexistence of Bipolar and Unipolar Switching of Cu and Oxygen Vacancy Nanofilaments in Cu/TaOx/Pt Resistive Devices. ECS Solid State Lett. 1(1), Q11–Q13 (2012)

    Article  Google Scholar 

  101. X. Guo, C. Schindler, S. Menzel, R. Waser, Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007)

    Article  ADS  Google Scholar 

  102. Y. Yang, Y. Takahashi, A. Tsurumaki-Fukuchi, M. Arita, M. Moors, M. Buckwell, A. Mehonic, A.J.J. Kenyon, Probing electrochemistry at the nanoscale: in situ TEM and STM characterizations of conducting filaments in memristive devices. J. Electroceram. 39(1–4), 73–93 (2017)

    Article  Google Scholar 

  103. W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett. 15(6), 3983–3987 (2015)

    Article  ADS  Google Scholar 

  104. S.-J. Choi, G.-S. Park, K.-H. Kim, S. Cho, W.-Y. Yang, X.-S. Li, J.-H. Moon, K.-J. Lee, K. Kim, In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3273 (2011)

    Article  Google Scholar 

  105. X.Z. Tian, S.Z. Yang, M. Zeng, L.F. Wang, J.K. Wei, Z. Xu, W.L. Wang, X.D. Bai, Bipolar electrochemical mechanism for mass transfer in nanoionic resistive memories. Adv. Mater. 26, 3649 (2014)

    Article  Google Scholar 

  106. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24(14), 1844–9 (2012)

    Article  Google Scholar 

  107. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Article  ADS  Google Scholar 

  108. U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14, 2401 (2014)

    Article  ADS  Google Scholar 

  109. Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat Commun. 5, 4232 (2014)

    Article  ADS  Google Scholar 

  110. C.P. Hsiung, H.W. Liao, J.Y. Gan, T.B. Wu, J.C. Hwang, F. Chen, M.J. Tsai, Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano 4, 5414 (2010)

    Article  Google Scholar 

  111. Z. Xu, Y. Bando, W. Wang, X. Bai, D. Golberg, Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010)

    Article  Google Scholar 

  112. E. Linn, R. Rosezin, C. Kügeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)

    Article  ADS  Google Scholar 

  113. P. Kapur, J.P. McVittie, K.C. Saraswat, Technology and reliability constrained future copper interconnects—Part I: Resistance modeling. IEEE Trans. Electron Devices 49, 590–597 (2002)

    Article  ADS  Google Scholar 

  114. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  115. S. Yu, Y. Deng, B. Gao, P. Huang, B. Chen, X. Liu, J. Kang, H.-Y. Chen, Z. Jiang, H.-S.P. Wong, Design Guidelines for 3D RRAM Cross-Point Architecture, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 421–424 (2014)

    Google Scholar 

  116. G.W. Burr, R.S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi, Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. 32(4), 040802 (2014)

    Article  Google Scholar 

  117. R. Rosezin, E. Linn, L. Nielen, C. Kugeler, R. Bruchhaus, R. Waser, Integrated complementary resistive switches for passive high-density nanocrossbar arrays. IEEE Electron Device Lett. 32(2), 191–193 (2011)

    Article  ADS  Google Scholar 

  118. J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K.P. Biju, S. Kim, S. Park, H. Hwang, Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications, in Proceedings of the IEEE Electron Devices Meeting (IEDM) (2010)

    Google Scholar 

  119. D.J. Wouters, L. Zhang, A. Fantini, R. Degraeve, L. Goux, Y.Y. Chen, B. Govoreanu, G.S. Kar, G.V. Groeseneken, M. Jurczak, Analysis of complementary RRAM switching. IEEE Electron Device Lett. 33(8), 1186–1188 (2012)

    Article  ADS  Google Scholar 

  120. A. Fantini, L. Goux, R. Degraeve, D.J. Wouters, N. Raghavan, G. Kar, A. Belmonte, Y.-Y. Chen, B. Govoreanu and M. Jurczak, Intrinsic switching variability in HfO2 RRAM, in Proceedings of the 5th IEEE International Memory Workshop (IMW) (2013)

    Google Scholar 

  121. N. Raghavan, R. Degraeve, A. Fantini, L. Goux, D.J. Wouters, G. Groeseneken, M. Jurczak, Stochastic variability of vacancy filament configuration in ultra-thin dielectric RRAM and its impact on OFF-state reliability, in Proceedings of the IEEE International Electron Devices Meeting (IEDM), pp. 21.1.1–21.1.4 (2013)

    Google Scholar 

  122. S. Yu, X. Guan, H.-S.P. Wong, On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling Monte Carlo simulation and experimental characterization, in Proceedings of the IEEE International Electron Devices Meeting (IEDM), pp. 17.3.1–17.3.4 (2011)

    Google Scholar 

  123. C.-W. Hsu, I.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin, T.-H. Hou, Self-rectifying bipolar TaOx/TiO2RRAM with superior endurance over 10e12cycles for 3D high-density storage-class memory, in Technical Digest VLSI Symposium, pp. 166–167 (2013)

    Google Scholar 

  124. C.-W. Hsu, Y.-F. Wang, C.-C. Wan, I.-T. Wang, C.-T. Chou, W.-L. Lai, Y.-J. Lee, T.-H. Hou, Homogeneous barrier modulation of TaOx/TiO2 bilayers for ultra-high endurance three-dimensional storage-class memory. Nanotechnology 25(16), 165202 (2014)

    Article  ADS  Google Scholar 

  125. C.-W. Hsu, C.-C. Wan, I.-T. Wang, M.-C. Chen, C.-L. Lo, Y.-J. Lee, W.-Y. Jang, C.-H. Lin, T.-H. Hou, 3D vertical TaOx/TiO2 RRAM with over 10e3 self-rectifying ratio and sub-μA operating current, in Proceedings of the IEEE International Electron Devices Meeting (IEDM), pp. 10.4.1–10.4.4 (2013)

    Google Scholar 

  126. Q. Luo, X. Xu, T. Gong, H. Lv, D. Dong, H. Ma, P. Yuan, J. Gao, J. Liu, Z. Yu, J. Li, S. Long, Q. Liu, M. Liu, 8-Layers 3D vertical RRAM with excellent scalability towards storage class memory applications, in IEEE International Electron Devices Meeting (IEDM), pp. 2.7.1–2.7.4 (2017)

    Google Scholar 

  127. X. Peng, R. Madler, P.-Y. Chen, S. Yu, Cross-point memory design challenges and survey of selector device characteristics. J. Comput. Electron. 16(4), 1167–1174 (2017)

    Article  Google Scholar 

  128. J.-J. Huang, Y.-M. Tseng, W.-C. Luo, C.-W. Hsu, T.-H. Hou, One selector-one resistor (1s1r) crossbar array for high-density flexible memory applications, Proceedings of the IEEE International Electron Devices Meeting (IEDM), pp. 31.7.1–31.7.4 (2011)

    Google Scholar 

  129. J.-J. Huang, Y.-M. Tseng, C.-W. Hsu, T.-H. Hou, Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Device Lett. 32(10), 1427–1429 (2011)

    Article  ADS  Google Scholar 

  130. J. Shin, I. Kim, K.P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application. J. Appl. Phys. 109, 033712 (2011)

    Article  ADS  Google Scholar 

  131. B. Govoreanu, C. Adelmann, A. Redolfi, L. Zhang, S. Clima, M. Jurczak, High-performance metal-insulator-metal tunnel diode selectors. IEEE Electron Device Lett. 35(1), 63–65 (2014)

    Article  ADS  Google Scholar 

  132. J. Woo, J. Song, K. Moon, J.H. Lee, E. Cha, A. Prakash, D. Lee, S. Lee, S. Park, Y. Koo, C.G. Park, H. Hwang, Electrical and reliability characteristics of a scaled (~30 nm) tunnel barrier selector (W/Ta2O5/TaOx/TiO2/TiN) with excellent performance (JMAX > 107A/cm2), in Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, pp. 1–2 (2014)

    Google Scholar 

  133. U. Chand, K.C. Huang, C.Y. Huang, T.Y. Tseng, Mechanism of Nonlinear Switching in HfO2-Based Crossbar RRAM With Inserting Large Bandgap Tunneling Barrier Layer. IEEE Trans. Electron Devices 62(11), 3665–3670 (2015)

    Article  ADS  Google Scholar 

  134. B.J. Choi, J. Zhang, K. Norris, G. Gibson, K.M. Kim, W. Jackson, M.M. Zhang, Z. Li, J.J. Yang, R.S. Williams, Trilayer tunnel selectors for memristor memory cells. Adv. Mater. 28, 356–362 (2016)

    Article  Google Scholar 

  135. M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Letter 32(11), 1579–1581 (2011)

    Article  ADS  Google Scholar 

  136. K. Zhang, B. Wang, F. Wang, Y. Han, X. Jian, H. Zhang, H.S.P. Wong, VO2-based selection device for passive resistive random access memory application. IEEE Electron Device Lett. 37(8), 978–981 (2016)

    Google Scholar 

  137. I.P. Radu, B. Govoreanu, K. Marten, M. Toeller, A.P. Peter, M.R. Ikram, L.Q. Zhang, H. Hody, W. Kim, P. Favia, T. Conard, H.Y. Chou, B. Put, V.V. Afanasiev, A. Stesmans, A. Heyns, S.D. Gendt, M. Jurczak, Vanadium dioxide for selector applications. ECS Trans. 58(7), 249–258 (2013)

    Article  Google Scholar 

  138. K. Martens, I.P. Radu, S. Mertens, X. Shi, L. Nyns, S. Cosemans, P. Favia, H. Bender, T. Conard, M. Schaekers, S. De Gendt, V. Afanas’ev, J.A. Kittl, M. Heyns, M. Jurczak, The VO2 interface, the metal-insulator transition tunnel junction, and the metal-insulator transition switch on-off resistance. J. Appl. Phys. 112, 124501 (2012)

    Article  ADS  Google Scholar 

  139. E. Cha, J. Woo, D. Lee, S. Lee, J. Song, Y. Koo, J.H. Lee, C.G. Park, M.Y. Yang, K. Kamiya, K. Shiraishi, B. Magyari-Köpe, Y. Nishi, H. Hwang, Nanoscale (~10 nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode, IEEE International Electron Devices Meeting, pp. 10.5.1–10.5.4 (2013)

    Google Scholar 

  140. S. Kim, T.J. Ha, S. Kim, J.Y. Lee, K.K.W., J.H. Shin, Y.T. Park, S.P. Song, B.Y. Kim, W.G. Kim, J.C. Lee, H.S. Lee, J.H. Song, E.R. Hwang, S.H. Cho, J.C. Ku, J.I. Kim, K.S. Kim, J.H. Yoo, H.J. Kim, H.G. Jung, Improvement of characteristics of NbO2 selector and full integration of 4F2 2x-nm tech 1S1R ReRAM, in IEEE International Electron Devices Meeting (IEDM), pp. 10.3.1–10.3.4 (2015)

    Google Scholar 

  141. X. Liu, S.K. Nandi, D.K. Venkatachalam, K. Belay, S. Song, R.G. Elliman, Reduced threshold current in NbO2 selector by engineering device structure. IEEE Electron Device Lett. 35(10), 1055–1057 (2014)

    Article  ADS  Google Scholar 

  142. T. Sakata, K. Sakata, G. Höfer, T. Horiuchi, Preparation of NbO2 single crystals by chemical transport reaction. J. Cryst. Growth 12(2), 88–92 (1972)

    Article  ADS  Google Scholar 

  143. J. Park, T. Hadamek, A.B. Posadas, E. Cha, A.A. Demkov, H. Hwang, Multi-layered NiOy/NbOx/NiOy fast drift-free threshold switch with high Ion/Ioff ratio for selector application. Sci. Rep. 7, 4068 (2017)

    Article  ADS  Google Scholar 

  144. S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21(20), 1450–1453 (1968)

    Article  ADS  Google Scholar 

  145. Y. Koo, H. Hwang, Zn1-xTex ovonic threshold switching device performance and its correlation to material parameters. Sci. Rep. 8, 11822 (2018)

    Article  ADS  Google Scholar 

  146. T. Gao, J. Feng, H. Ma, The ovonic threshold switching characteristics in SixTe1-x based selector devices. Appl. Phys. A 124, 734 (2018)

    Article  ADS  Google Scholar 

  147. M. Lee, D. Lee, S.-H. Cho, J.-H. Hur, S.-M. Lee, D.H. Seo, D.-S. Kim, M.-S. Yang, S. Lee, E. Hwang, M.R. Uddin, H. Kim, U.-I. Chung, Y. Park, I.-K. Yoo, A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat. Commun. 4, 2629 (2013)

    Article  ADS  Google Scholar 

  148. H.Y. Cheng, W.C. Chien, I.T. Kuo, E.K. Lai, Y. Zhu, J.L. Jordan-Sweet, A. Ray, F. Carta, F.M. Lee, P. Tseng, M. Lee, Y. Lin, W. Kim, R. Bruce, C.W. Yeh, C. Yang, M. BrightSky, H. Lung, An ultra high endurance and thermally stable selector based on TeAsGeSiSe chalcogenides compatible with BEOL IC Integration for cross-point PCM, in IEEE International Electron Devices Meeting (IEDM), pp. 2.2.1–2.2.4 (2017)

    Google Scholar 

  149. M.-J. Lee, D. Lee, H. Kim, H.-S. Choi, J.-B. Park, H.G. Kim, Y.-K. Cha, U.-I. Chung, I.-K. Yoo, K. Kim, Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays, in IEEE International Electron Devices Meeting (IEDM), pp. 2.6.1–2.6.3 (2012)

    Google Scholar 

  150. M. Alayan, E. Vianello, G. Navarro, C. Carabasse, S. La Barbera, A. Verdy, N. Castellani, A. Levisse, G. Molas, L. Grenouillet, T. Magis, F. Aussenac, M. Bernard, B. DeSalvo, J.M. Portal, E. Nowak, In-depth investigation of programming and reading operations in RRAM cells integrated with Ovonic Threshold Switching (OTS) selectors, in IEEE International Electron Devices Meeting (IEDM), pp. 2.3.1–2.3.4 (2017)

    Google Scholar 

  151. S.H. Jo, T. Kumar, S. Narayanan, W.D. Lu, H. Nazarian, 3D-stackable crossbar resistive memory based on Field Assisted Superlinear Threshold (FAST) selector, in IEEE International Electron Devices Meeting (IEDM), pp. 6.7.1–6.7.4 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Programmatic grant no. A1687b0033 from the Singapore government’s Research, Innovation and Enterprise 2020 plan (Advanced Manufacturing and Engineering domain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Yiqian Zhuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuo, V.Y., Chen, Z., Chui, K.J. (2021). Resistive Random Access Memory Device Physics and Array Architectures. In: Lew, W.S., Lim, G.J., Dananjaya, P.A. (eds) Emerging Non-volatile Memory Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-6912-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6912-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6910-4

  • Online ISBN: 978-981-15-6912-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics