Skip to main content

In Situ Chemical Reduction of Chlorinated Organic Compounds

  • Chapter
  • First Online:
Environmental Soil Remediation and Rehabilitation

Abstract

Chlorinated organic compounds (COCs) are common anthropogenic contaminants encountered in soil and groundwater. COCs were industrially produced for different applications, such as dry cleaning, degreasing, or as pesticides. The presence of COCs in the environment is a major concern because of their toxicity and persistence.

The most widely used method for their removal is the conventional pump-and-treat approach. However, this technology can hardly achieve a complete remediation because of geological characteristics and the presence of pore space pollution/adsorbed pollution, leading to a residual saturation. Hence, in addition to the improvement of pump-and-treat systems, In situ chemical processes have been largely developed. These chemical processes involve the injection of chemical reagents for the removal of residual pollution source and/or the treatment of contamination plume.

Chemical degradation of COCs can be achieved by oxidative or reductive processes. If chemical oxidation has been first developed for in situ application, chemical reduction is one of the most important emerging remediation techniques for COCs treatment. Due to the electronegative character of chlorine substituents, COCs can effectively be transformed via reductive pathways. Moreover, reductive dechlorination has shown higher efficiency on highly chlorinated compounds.

This chapter focuses on the presentation of the chemical reduction of the most common COCs pollutants, followed by kinetic and mechanistic approaches related to the use of iron-based particles. Developments of in situ chemical reduction technologies aiming to enhance remediation rates are also exposed. Influence of environmental conditions for in situ applications is then developed. Finally, a case study is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

The authors acknowledge the ADEME AMI SILPHES project and the BRGM project MULTISCALEXPER PSO3 of D3E division for financial support for writing this chapter. The case study was supported by ADEME (French Environment and Energy Management Agency) in the framework of Eco-Industries 2011 program (project DECHLORED, contract no. 1172C0034) and received financial support by BRGM research division. The authors acknowledge ClÕment ZORNIG who elaborated and provided the Fig. 6.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Ignatiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, R., Betelu, S., Colombano, S., Tzedakis, T., Masselot, G., Ignatiadis, I. (2020). In Situ Chemical Reduction of Chlorinated Organic Compounds. In: van Hullebusch, E., Huguenot, D., Pechaud, Y., Simonnot, MO., Colombano, S. (eds) Environmental Soil Remediation and Rehabilitation. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-40348-5_6

Download citation

Publish with us

Policies and ethics