Skip to main content
Log in

Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we assessed the transportability of zero valent iron nanoparticles (nano-Fe0) coated with different organics (carboxy methyl cellulose (CMC), poly acrylic acid (PAA), and xanthan gum) in standard porous sand and in real aquifer sediments. Our results suggest that the organic surface coatings optimized for nano-Fe0 in porous sand media do not necessarily reflect the same transportability in real field aquifer sediment. Xanthan gum-coated nano-Fe0 showed highest transportability in standard porous sand, but the performance was much lower in real aquifer sediment, whereas the PAA-coated nano-Fe0 particle showed better transportability both in aquifer sediment and in porous sand media. Nano-Fe0 without organic surface coating exhibited very low transportability and was largely retained by the porous medium. Our results suggest that the molecular weight and surface charge density of the organic may play a role in transportability of these nanoparticles. To assess the impact of organic coating on the nanoparticle reactivity with contaminants, we also conducted batch tests to follow TCE degradation using different surface coatings and found no significant difference albeit a minor delay in kinetics. Using theoretical calculations, we also estimated the potential distance traveled by nanoparticles in porous sand as well as in aquifer sediment. Our results suggest that using xanthan gum and PAA as surface coating, nano-Fe0 could travel up to 9.8 and 4.1 m, respectively, in the porous sand media as compared to 0.2 and 0.9 m in real aquifer sediment, respectively.

Nanoparticle mobility in porous sand vs and aquifer sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbassi R, Yadav AK, Kumar N, Huang S, Jaffe PR (2013) Modeling and optimization of dye removal using “green clay” supported iron nano-particles. Ecol Eng 61:366–370

    Article  Google Scholar 

  • Allen CN, Lequeux N, Chassenieux C, Tessier G, Dubertret B (2007) Optical analysis of beads encoded with quantum dots coated with a cationic polymer. Adv Mater 19:4420–4425

    Article  CAS  Google Scholar 

  • Basnet M, Ghoshal S, Tufenkji N (2013) Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zero valent iron nanoparticles in saturated porous media. Environ Sci Technol 47:13355–13364

    Article  CAS  Google Scholar 

  • Basnet M, Tommaso CD, Ghoshal S, Tufenkji N (2015) Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Water Res 68:354–363

    Article  CAS  Google Scholar 

  • Busch J, Meibner T, Pothoff A, Oswald SE (2014) Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system. Environ Sci Pollut Res 21:10908–10916

    Article  CAS  Google Scholar 

  • Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717–3726

    Article  CAS  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams R (1995) Particle deposition and aggregation: measurement, modeling and simulation. Butterworth-Heinemann, Boston

    Google Scholar 

  • Elliot JE, Macdonald M, Nie J, Bowman CN (2004) Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45:1503–1510

    Article  Google Scholar 

  • Fritz G, Schädler V, Willenbacher N, Wagner NJ (2002) Electrosteric stabilization of colloidal dispersions. Langmuir 18:6381–6390

    Article  CAS  Google Scholar 

  • Han Y, Shi N, Wang H, Pan X, Fang H, Yu Y (2016) Nanoscale zerovalent iron-mediated degradation of DDT in soil. Environ Sci Pollut Res 23:6253–6263

    Article  CAS  Google Scholar 

  • He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ. Sci. Technol. 41:6216–6221

    Article  CAS  Google Scholar 

  • Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and nicroiron transport through sand columns using polyelectrolyte mixtures. Environ. Sci. Technol. 41:6418–6424

    Article  CAS  Google Scholar 

  • Jamieson AM, Southwick JG, Blackwell J (1982) Dynamical behavior of xanthan polysaccharide in solution. J Polym Sci 20:1513–1524

    CAS  Google Scholar 

  • Kaifas D, Malleret L, Kumar N, Fétimi W, Claeys-Bruno M, Sergent M, Doumenq P (2014) Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design. Sci Total Environ 481:335–342

    Article  CAS  Google Scholar 

  • Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2007) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ. Sci. Technol. 42:896–900

    Article  Google Scholar 

  • Kosmulski M (2011) The pH-dependent surface charging and points of zero charge V. Uptake. J. colloid interf. Sci. 353:1–15

    Article  CAS  Google Scholar 

  • Kumar N, Auffan M, Gattacceca J, Rose J, Olivi L, Borschneck D, Kvapil P, Jublot M, Kaifas D, Malleret L, Doumenq P, Bottero J-Y (2014a) Molecular insights of oxidation process of iron nanoparticles: spectroscopic, magnetic, and microscopic evidence. Environ. Sci. Technol. 48:13888–13894

    Article  CAS  Google Scholar 

  • Kumar N, Omoregie EO, Rose J, Masion A, Lloyd JR, Diels L, Bastiaens L (2014b) Inhibition of surface reducing bacteria in aquifer sediment by iron nanoparticles. Water Res 51:64–72

    Article  CAS  Google Scholar 

  • Kumar N, Millot R, Battaglia-Brunet F, Omoregie E, Chaurand P, Borschneck D, Bastiaens L, Rose J (2016) Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations. Environ Sci Pollut Res 23:5960–5968

    Article  CAS  Google Scholar 

  • Labille J, Thomas F, Milas M, Vanhaverbeke C (2005) Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure. J colloid interf Sci 284:149–156

    Article  CAS  Google Scholar 

  • Laguecir A, Ulrich S, Labille J, Fatin-Rouge N, Stoll S, Buffle J (2006) Size and pH effect on electrical and conformational behavior of poly(acrylic acid): simulation and experiment. Eur Polym J 42:1135–1144

    Article  CAS  Google Scholar 

  • Laumann S, Micic V, Lowry GV, Hofman T (2013) Carbonate minerals in porous media decrease mobility of poluacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ Pollut 179:53–60

    Article  CAS  Google Scholar 

  • Lecoanet HF, Bottero J-Y, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol. 38:5164–5169

    Article  CAS  Google Scholar 

  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39:1338–1345

    Article  CAS  Google Scholar 

  • Louie MS, Tilton RD, Lowry GV (2016) Impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environmental Science: nano 3:283–310

    CAS  Google Scholar 

  • McCurrie R (1994) Ferromahnetic materials: structure and properties. Academic Press, London

    Google Scholar 

  • Milas M, Rinaudo M (1986) Properties of xanthan gum in aqueous solutions: role of the conformational transition. Carbohyd Res 158:191–204

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2004) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39:1221–1230

    Article  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41:284–290

    Article  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton R, Lowry G (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  • Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24:45–57

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    Article  CAS  Google Scholar 

  • Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner M, Bottero J-Y (2010) Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 44:4897–4902

    Article  CAS  Google Scholar 

  • Strutz TJ, Hornbruch G, Dahmke A, Köber R (2016) Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media. Environ Sci Pollut Res 23:17200–17209

    Article  CAS  Google Scholar 

  • Sun Y-P, Li X-Q, Zhang W-X, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloid Surface A 308:60–66

    Article  CAS  Google Scholar 

  • Thomas F, Prélot B, Villiéras F, Cases J-M (2002) Electrochemical properties of solid at the aqueous-solid interface and heterogeneity of surface. C.R. Geosci 334:633–648

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Article  Google Scholar 

  • Tufenkji N, Elimelech M (2004) Correlation equation for predicting single-collector efficiency in physiochemical filteration in saturated porous media. Environ. Sci. Technol. 38:529–536

    Article  CAS  Google Scholar 

  • Vecchia ED, Luna M, Sethi R (2009) Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environ Sci Technol 43:8942–8947

    Article  Google Scholar 

  • Velimirovic M, Schmid D, Wagner S, Micic V, Von der Kammer F, Hofmann T (2015a) Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Sci Total Environ 563-564:713–723

    Article  Google Scholar 

  • Velimirovic M, Simons Q, Bastiaens L (2015b) Use of CAH-degrading bacteria as test-organism for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment. Chemosphere 134:338–345

    Article  CAS  Google Scholar 

  • Yang GCC, Tu H-C, Hung C-H (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172

    Article  CAS  Google Scholar 

  • Zhang W-x (2003) Nanoscale iron particles for enviromental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhivkov AM, Hristov RP (2015) Adsorption of carboxymethyl cellulose on alumina particles. J Colloid Interf Sci 447:159–166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to SERPOL for providing us the aquifer sediment from the site. This research received funding from the European Union’s Seventh Framework Programme FP7/2007-2013 NanoRem under grant agreement number 309517 (Article II.30 GA) and the French national research agency ANR via the NANOFREZES project. The authors thank the CNRS for funding the GDRi-iCEINT. This work is also a contribution to the Labex Serenade (ANR-11-LABX-0064) funded by the «Investissements d’Avenir» French Government program of the French National Research Agency (ANR) through the A*MIDEX project (ANR-11-IDEX-0001-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 8169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Labille, J., Bossa, N. et al. Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances. Environ Sci Pollut Res 24, 9269–9277 (2017). https://doi.org/10.1007/s11356-017-8597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8597-1

Keywords

Navigation