Skip to main content
Log in

Particle Surface Hydrophobicity and the Dechlorination of Chloro-Compounds by Iron Sulfides

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

Halogenated aliphatic compounds (HACs) can be reduced by iron sulfides in aqueous systems. Generally, the thermodynamics and kinetics of dehalogenation reactions are controlled by the mineralogical and particle surface characteristics of the iron sulfide, the composition of the HAC and reaction conditions such as component concentrations, pH and Eh. In this theoretical and experimental investigation of CCl4 and C2Cl6 reduction by FeS and FeS2, the roles of hydrophobic and hydrophilic sites on the iron sulfides were analyzed. Experimental data obtained through zeta potential measurements, were used along with the Gouy-Chapman model and the simple two-layer surface complexation model to relate iron sulfide surface hydroxyl densities to the degree of HAC dehalogenation. The surface hydroxyl site densities of FeS and FeS2 were found to be 0.11 sites/nm2 and 0.21 sites/nm2, respectively. During the dehalogenation reaction process, CCl4 was found to decrease to its first intermediate product CHCl3 within the first 20 hours followed by a slower process of conversion to CH2Cl2. The results also show that FeS is less hydrated (more hydrophobic) than FeS2. For CCl4 and C2Cl6, FeS is a better dehalogenator than FeS2. These results imply that particle surface hydrophobicity is a critical factor in surface-mediated dehalogenation of chlorinated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, A., Liang, L. and Tratnyek, P. G.: 1995, ‘Phenomena Affecting Remediation of Organic Groundwater Contaminants with Iron Metal at Solid-Water Interface’, Extended Abstract, American Chemical Society, Industrial and Engineering Chemistry Division, 54–55.

  • Burris, D. R., Campbell, T. J. and Manoranjan, V. S.: 1995, ‘Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system’, Env. Sci. Technol. 29, 2850–2855.

    Article  CAS  Google Scholar 

  • Burris, D. R., Allen-King, R. M., Manoranjan, V. S., Campbell, T. J., Loraine, G. A. and Deng, B.: 1998, ‘Chlorinated ethene reduction by cast iron: sorption and mass transfer’, ASCE J. Envir. Engr. 10, 1012–1019.

    Article  Google Scholar 

  • Butler, E. C. and Hayes, K. F.: 1998, ‘Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide’, Env. Sci. Technol. 32, 1276–1284.

    Article  CAS  Google Scholar 

  • Butler, E. C. and Hayes, K. F.: 1999, ‘Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide’, Env. Sci. Technol. 33, 2021–2027.

    Article  CAS  Google Scholar 

  • Butler, E. C. and Hayes, K. F.: 2000, ‘Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Env. Sci. Technol. 34, 422–429.

    Article  CAS  Google Scholar 

  • Cipollone, M. G., Wolfe, N. L. and Hassan, S. M.: 1995, ‘Kinetic studies on the use of metallic iron to reduce organic compounds in water under environmental conditions’, Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. 35, 812–814 (Abstr.).

    Google Scholar 

  • Coracioglu, O. M. and Huang, C. P.: 1987, ‘The surface acidity and characterization of some commercial activated carbons’, Carbon, 25(4), 569–578.

    Article  Google Scholar 

  • Dahmke, A.: 1997, Aktualisierung der literaturstudie „Reaktive Wände”, pH-Redox-reaktive Wände. Landesanstalt für Umweltschutz, Baden-Würtemberg, texte und Berichte zur Altlastenbearbeitung, 33/97, Karlsruche.

  • Gillham, R. W., O'Hannesin, S. F. and Orth, W. S.: 1993, ‘Metal enhanced abiotic degradation of halogenated aliphatics: laboratory tests and field trials’, Proceedings of the 1993 Hazmat Central Conference, Chicago, IL, Mar 9–11.

  • Gillham, R. W.: 1995, ‘Resurgence of research concerning organic transformations enhanced by zero-valent metals and potential application in remediation of contaminated groundwater’, Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. 35, 691–694 (Abstr.).

    Google Scholar 

  • Gotpagar, J. K., Grulke, E. A. and Bhattacharyya, D.: 1998, ‘Reductive dehalogenation of trichloroethylene: kinetic models and experimental verification’, J. Hazard. Mat. 62, 243–264.

    Article  CAS  Google Scholar 

  • Gotpagar, J., Lyuksyutov, S., Cohn, R., Grulke, E. and Bhattacharyya, D.: 1999, ‘Reductive dehalogenation of trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies’, Langmuir 15, 8412–8420.

    Article  CAS  Google Scholar 

  • Hayes, K. F., Redden, G., Ela, W. and Leckie, J. O.: 1991, ‘Surface complexation models: An evaluation using FITEQL and oxides mineral titration data’, J. Colloid and Interface Sci. 142(2), 448–469.

    Article  CAS  Google Scholar 

  • Hochella, M. F., Jr. and White, A. F.: 1990, ‘In Mineral-Water Interface Geochemistry’, Reviews in mineralogy 23, Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  • Huang, C. P. and Stumm, W.: 1973, ‘Adsorption of cations on hydrous Al2O3’, J. Colloid and Interface Sci. 43(2), 409–414.

    Article  CAS  Google Scholar 

  • Huang, C. P., Hsieh, Y. S., Park, S. W. and Corapcioglu, M. O.: 1986, ‘Chemical interactions between heavy metal ions and hydrous solids’, Metal speciation, separation and recovery, in J. W. Patterson and R. Passino (eds.), Lewis, Boca Raton, Fla., pp. 437–465.

    Google Scholar 

  • Hung, H. M. and Hoffmann, M. R.: 1998, ‘Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound’, Env. Sci. Technol. 32, 3011–3016.

    Article  CAS  Google Scholar 

  • Johnson, T. L., Fish, W., Gorby, Y. A. and Tratnyek, P. G.: 1998, ‘Degradation of carbon tetrachloride by iron metal: complexation effects on the oxide surface’, J. Contam. Hydrol. 29, 379–398.

    Article  CAS  Google Scholar 

  • Matheson, L. J. and Tratnyek, P. G.: 1994, ‘Reductive dehalogenation of chlorinated methanes by iron metal’, Env. Sci. Technol. 28, 2045–2053.

    Article  CAS  Google Scholar 

  • McBride, M. B.: 1994, ‘ Environmental chemistry of soils’, Oxford Univ. Press, New York, 406 pp.

    Google Scholar 

  • Park, S. W. and Huang, C. P.: 1987, ‘The surface acidity of hydrous CdS(s)’, J. Colloid and Interface Sci. 117(2), 431–441.

    Article  CAS  Google Scholar 

  • Noh, J. S. and Schwarz, J. A.: 1990, ‘Estimation of surface ionization constants for amphoteric solids’, J. Colloid and Interface Sci. 139(1), 139–148.

    Article  CAS  Google Scholar 

  • Puls, R. W., Powell, R. M. and Paul, C. J.: 1995, ‘In situ remediation of groundwater contaminated with chromate and chlorinated solvents using zero-valent iron, a field study’, Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. 35, 788–791 (Abstr.).

    Google Scholar 

  • Ramamoorthy, S. and Ramamoorthy, S.: 1997, ‘ Chlorinated organic compounds in the environment’, Lewis Publishers, New York

    Google Scholar 

  • Sivavec, T. M.: 1995, ‘Reductive dechlorination of chlorinated solvents by iron metal and iron sulfide minerals. Proceedings of IBC International Symposium on Biological Dehalogenation, Annapolis, MD, Oct 19. (Abstr.).

  • Sivavec, T. M. and Horney, D. P.: 1995, ‘Reductive dechlorination of chlorinated ethenes by iron metal’, Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. 35, 695–698 (Abstr.)

    Google Scholar 

  • Kriegman-King, M. R. and Reinhard, M.: 1992, ‘Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite’, Env. Sci. Technol. 26, 2198–2206.

    Article  CAS  Google Scholar 

  • Vogan, J. L., Gillham, R. W., O'Hannesin, S. F., Matulewicz, W. H. and Rhodes, J. E.: 1995, ‘Site specific degradation of VOCs in groundwater using zero valent iron’, Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. 35, 812–814 (Abstr.).

    Google Scholar 

  • Vogel, T. M., Criddle, C. S. and McCarthy, P. L.: 1987, ‘Transformation of halogenated aliphatic compounds’, Env. Sci. Technol. 21, 722–736.

    Article  CAS  Google Scholar 

  • Weng, C. H., Huang, C. P., Member, ASCE, Allen, H. E. and Sanders, P. F.: 2001, ‘Cr(VI) adsorption onto hydrous concrete particles from groundwater’, J. Environ. Eng. 127(12), 1124–1131.

    Article  CAS  Google Scholar 

  • Yamane, C. L., Gallinatti, J. D., Szerdy, F. S., Delfino, T. A., Hankins, D. A. and Vogan, J. L.: 1995, ‘Installation of a subsurface groundwater treatment wall composed of granular zero-valent iron’, Natl. Meet.-Am. Chem. Soc., Div. Environ. Chem. 35, 792–795 (Abstr).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SW., Kim, SK., Kim, JB. et al. Particle Surface Hydrophobicity and the Dechlorination of Chloro-Compounds by Iron Sulfides. Water Air Soil Pollut: Focus 6, 97–110 (2006). https://doi.org/10.1007/s11267-005-9016-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-005-9016-z

Keywords

Navigation