Skip to main content

Nanomaterial Transport, Transformation, and Fate in the Environment

A Risk-Based Perspective on Research Needs

  • Conference paper
Nanomaterials: Risks and Benefits

Abstract

The existing approaches for assessing the environmental risks of nanomaterials need to be adapted to the behaviors of nanomaterials before they can provide reliable information. Assessing or predicting these risks requires understanding of the potential sources of these materials to the environment, their distribution once released, their transformations and persistence, and their potential negative effects. In this chapter we discuss the potential sources of nanomaterials released to the environment, then we present potential physical and biogeochemical processes that can affect the fate, transport, and transformations of manufactured nanomaterials released into the environment. Finally, we discuss modifications of existing risk analysis methods needed and the most important data gaps that must be filled in order to assess the environmental risks associated with these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brant, J., H. Lecoanet and M. Wiesner (2005). “Aggregation and Deposition Characteristics of Fullerene Nanoparticles in Aqueous Systems.” J. Nanopart. Res. 7(4–b5): 545–553.

    Article  CAS  Google Scholar 

  2. Gerlach, R., A. B. Cunningham and F. Caccavo (2000). “Dissimilatory Iron-Reducing Bacteria Can Influence the Reduction of Carbon Tetrachloride by Iron Metal.” Environ. Sci. Technol. 34(12): 2461–2464.

    Article  CAS  Google Scholar 

  3. Hyung, H., J. D. Fortner, J. B. Hughes and J.-H. Kim (2007). “Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase.” Environ. Sci. Technol. 41(1): 179–184.

    Article  PubMed  CAS  Google Scholar 

  4. Kanel, S. R., R. R. Goswami, T. P. Clement, M. O. Barnett and D. Zhao (2008). “Two Dimensional Transport Characteristics of Surface Stabilized Zero-Valent Iron Nanoparticles in Porous Media.” Environ. Sci. Technol. 42(3): 896–900.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, Y., H. Choi, D. Dionysiou and G. V. Lowry (2005b). “Trichloroethene Hydrode-chlorination in Water by Highly Disordered Monometallic Nanoiron.” Chem. Mater. 17(21): 5315–5322.

    Article  CAS  Google Scholar 

  6. Liu, Y., S. A. Majetich, R. D. Tilton, D. S. Sholl and G. V. Lowry (2005a). “TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties.” Environ. Sci. Technol. 39(5): 1338–1345.

    Article  CAS  Google Scholar 

  7. Long, T., N. Saleh, R. Tilton, G. V. Lowry and B. Veronesi (2006). “Titanium Dioxide (P25) Produces Oxidative Stress in Immortalized Brain Microglia (BV2): Implication of Nanoparticle Neurotoxicity.” Environ. Sci. Technol. 40(14): 4346–4352.

    Article  PubMed  CAS  Google Scholar 

  8. Long, T., J. Tajuba, N. Saleh, P. Sama, J. Parker, C. Swartz, G. Lowry and B. Veronesi (2007). “Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons In Vitro.” Environ. Health Perspect. 115(11): 1631– 1637.

    Article  PubMed  CAS  Google Scholar 

  9. LuxResearch (2004). Sizing Nanotechnology's Value Chain. New York, Lux Research.

    Google Scholar 

  10. Mueller, N. C. and B. Nowack (2008). “Exposure Modeling of Engineered Nanoparticles in the Environment.” Environ. Sci. Technol. 42(12): 4447–4453.

    Article  PubMed  CAS  Google Scholar 

  11. Nurmi, J. T., P. G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C. Wang, J. C. Linehan, D. W. Matson, R. L. Penn and M. D. Driessen (2005). “Characterization and Properties of Metallic Iron Nanoparticles: Spectroscopy, Electrochemistry, and Kinetics.” Environ. Sci. Technol. 39(5): 1221–1230.

    Article  PubMed  CAS  Google Scholar 

  12. Phenrat, T., N. Saleh, K. Sirk, H. Kim, K. Matyjaszewski, R. Tilton and G. V. Lowry (2008). “Stabilization of Aqueous Nanoscale Zerovalent Iron Dispersions by Anionic Polyelectrolytes: Adsorbed Anionic Polyelectrolyte Layer Properties and Their Effect on Aggregation and Sedimentation.” J. Nanopart. Res. 10: 795–814.

    Article  CAS  Google Scholar 

  13. Phenrat, T., N. Saleh, K. Sirk, R. D. Tilton and G. V. Lowry (2007). “Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions.” Environ. Sci. Technol. 41(1): 284–290.

    Article  PubMed  CAS  Google Scholar 

  14. Roberts, A. P., A. S. Mount, B. Seda, J. Souther, R. Qiao, S. Lin, P. C. Ke, A. M. Rao and S. J. Klaine (2007). “In vivo Biomodification of Lipid-Coated Carbon Nanotubes by Daphnia magna.” Environ. Sci. Technol. 41(8): 3025–3029.

    Article  PubMed  CAS  Google Scholar 

  15. Saleh, N., H. Kim, K. Matyjaszewski, R. Tilton and G. V. Lowry (2008). “Ionic Strength and Composition Affect the Mobility of Surface-Modified NZVI in Water-Saturated Sand Columns.” Environ. Sci. Technol. 42(9): 3349–3355.

    Article  PubMed  CAS  Google Scholar 

  16. Saleh, N., T. Phenrat, K. Sirk, B. Dufour, J. Ok, T. Sarbu, K. Matyjaszewski, R. D. Tilton and G. V. Lowry (2005). “Adsorbed Triblock Copolymers Deliver Reactive Iron Nanoparticles to the Oil/Water Interface.” Nano Lett. 5(12): 2489–2494.

    Article  PubMed  CAS  ADS  Google Scholar 

  17. Saleh, N., K. Sirk, T. Phenrat, B. Dufour, K. Matyjaszewski, R. D. Tilton and G. V. Lowry (2007). “Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media.” Environ. Eng. Sci. 24(1): 45–57.

    Article  CAS  Google Scholar 

  18. Williams, A. G. B., K. B. Gregory, G. F. Parkin and M. M. Scherer (2005). “Hexahydro-1,3,5-trinitro-1,3,5-triazine Transformation by Biologically Reduced Ferrihydrite: Evolution of Fe Mineralogy, Surface Area, and Reaction Rates.” Environ. Sci. Technol. 39(14): 5183–5189.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, Y., Y. Chen, P. Westerhoff and J. C. Crittenden (2008). “Stability and Removal of Water Soluble CdTe Quantum Dots in Water.” Environ. Sci. Technol. 42(1): 321– 325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G.V. Lowry or E.A. Casman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Lowry, G., Casman, E. (2009). Nanomaterial Transport, Transformation, and Fate in the Environment. In: Linkov, I., Steevens, J. (eds) Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9491-0_9

Download citation

Publish with us

Policies and ethics