Skip to main content

Analysis of Termite Microbiome and Biodegradation of Various Phenolic Compounds by a Bacterium Isolated from the Termite gut in Louisiana, USA

  • Chapter
  • First Online:
Valorisation of Agro-industrial Residues – Volume I: Biological Approaches

Abstract

The eastern subterranean termite (EST) Reticulitermes flavipes is an insect pest in the USA. Like all wood-feeding termites (WFT), EST relies on a complex system of microbes to meet its nutritional requirements. The microbiome of WFT is stable, but the relative abundance of bacteria changes depending on diet. The purpose of this study was to explore the microbial diversity within EST collected in Thibodaux and St. Francisville, LA and detect differences based on diet and location to determine if the microbiome has a strict structure. It was found that taxa did not differ much between nearby colonies, but relative abundance is impacted by the wood in the diet. Half of bacteria from the gut of termites on nuttall oak were Bacteroidales, of which 22.7% were members of the family Porphyromonadaceae. 44% of bacteria from termites on red maple were Spirochaetes. All Spirochaetes were members of the genus Treponema. Elusimicrobia, a phylum found exclusively within termites and wood-feeding cockroaches was not abundant in either St. Francisville colony. Taxa differed more between termite colonies from different locations, but the mircobiome of St. Francisville colonies appeared to begin diverging at the family level. Overall, the microbiome was typical of termites, harboring cellulolytic protozoa, nitrogen-fixing bacteria, acetogenic Spirochaetes, and methanogenic archaeans. This has implications in microbial ecology because the organisms are changing, but the function, digestion of lignocellulose, is not. A bacterium was isolated and identified from termite gut as Acinetobacter tandoii from our previous studies degraded various phenolics, including phenol, nitrophenol, dinitrophenol, trinitrophenol, and toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arakawa G, Watanabe H, Yamasaki H, Maekawa H, Tokuda G (2009) Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki. Biosci Biotechnol Biochem 73:710–718

    Article  CAS  PubMed  Google Scholar 

  • Beggs JD, Fewson CA (1977) Regulation and synthesis of benzyl alcohol dehydrogenase in Acinetobacter calcoaceticus NCIB8250. J Gen Microbiol 103:127–140

    Article  CAS  PubMed  Google Scholar 

  • Boga HI, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boopathy R (1997) Anaerobic phenol degradation by microorganisms of swine manure. Curr Microbiol 35:64–67

    Article  CAS  PubMed  Google Scholar 

  • Boucias DG, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, Scharf ME (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its response to dietary lignocellulose composition. Mol Ecol 22:1836–1853

    Article  CAS  PubMed  Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr EL, Kämpfer P, Patel BKC, Gürtler V, Seviour RJ (2003) Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 53:953–963

    Article  CAS  PubMed  Google Scholar 

  • Cleveland LR (1925) The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates. Biol Bull., University of Chicago 48:309–326

    Article  CAS  Google Scholar 

  • Coy MR, Salem TZ, Denton JS, Kovaleva ES, Liu Z, Barber DS, Campbell JH, Davis DC, Buchman GW, Boucias DG, Scharf ME (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40:723–732

    Article  CAS  PubMed  Google Scholar 

  • Desai MS, Brune A (2012) Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. 2012 The ISME Journal 6:1302–1313

    CAS  PubMed  Google Scholar 

  • Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doolittle M, Raina A, Lax A, Boopathy R (2007) Effect of natural products on gut microbes in Formosan subterranean termite, Coptotermes formosanus. Int Biodeterior Biodegrad 59:69–71

    Article  CAS  Google Scholar 

  • Doolittle M, Raina A, Lax A, Boopathy R (2008) Presence of nitrogen-fixing Klebsiella pneumoniae in the gut of the Formosan subterranean termite (Coptotermes formosanus). Bioresour Technol 99(8):3297–3300

    Article  CAS  PubMed  Google Scholar 

  • Field JG, Clarke KR, Warwick RM (1982) A practical strategy for analysing multispecies disstribution patterns. Mar Ecol Prog Ser 8:37–52

    Article  Google Scholar 

  • Florane CB, Bland JM, Husseneder C, Raina AK (2004) Diet-mediated inter-colonial aggression in the Formosan subterranean termite Coptotermes formosanus. J Chem Ecol 30:2559–2574

    Article  CAS  PubMed  Google Scholar 

  • Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first Spirochaetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grace JK (1997) Influence of tree extractives on foraging preferences of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 30:35–42

    Google Scholar 

  • Grace JK, Wood DL, Frankie GW (1989) Behavior and survival of Reticulitermes hesperus banks (Isoptera: Rhinotermitidae) on selected sawdusts and wood extracts. J Chem Ecol 15:129–139

    Article  Google Scholar 

  • Hongoh Y, Okhuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  CAS  PubMed  Google Scholar 

  • Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Okhuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X-F, Bakker MG, Judd TM, Reardon KF, Vivanco JM (2013) Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microb Ecol 65:531–536

    Article  PubMed  Google Scholar 

  • Hungate RE (1943) Quantitative analyses on the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36:730–739

    Article  CAS  Google Scholar 

  • Hupert-Kocurek K, Guzik U, Wojcieszynska D (2012) Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration. Acta Biochim Pol 59:345–351

    Article  CAS  PubMed  Google Scholar 

  • Husseneder C, Berestecky JM, Grace JK (2009) Changes in composition of culturable bacterial community in the gut of the Formosan subterranean termite depending on rearing conditions of the host. Ann Entomol Soc Am 102:498–507

    Article  Google Scholar 

  • Husseneder C, Ho H-Y, Blackwell M (2010) Comparison of the bacterial symbiont composition of the Formosan subterranean termite from its native and introduced range. Open Microbiol J 4:53–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47:215–222

    Article  Google Scholar 

  • Ke J, Singh D, Chen S (2011) Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). Int Biodeterior Biodegradation 65:744–756

    Article  CAS  Google Scholar 

  • Kuhnigk T, Borst E-M, Ritter A, Kämpfer P, Graf A, Hertel H, König H (1994) Degradation of lignin monomers by the hindgut flora of xylophagous insects. Syst Appl Microbiol 17:76–85

    Article  CAS  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by Spirochaetes from termite guts. Science 283:686–689

    Article  CAS  PubMed  Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    Article  CAS  PubMed  Google Scholar 

  • Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living Spirochaetes. Science 292:2495–2498

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K (2001) Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26

    Article  Google Scholar 

  • Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasogoensis. Biosci Biotechnol Biochem 71:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Morales-Ramos JA, Rojas MG (2001) Nutritional ecology of the Formosan subterranean termite (Isoptera: Rhinotermitidae): feeding response to commercial wood species. J Econ Entomol 94:516–523

    Article  CAS  PubMed  Google Scholar 

  • Nalepa CA (2015) Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol Entomol 40:323–335

    Article  Google Scholar 

  • Neter J, Wasserman W, Kutner MH (1990) Applied linear statistical models: regression, analysis of variance, and experimental designs, 3rd edn. IRWIN, Burr Ridge, IL

    Google Scholar 

  • Noda S, Okhuma M, Yamada A, Hongoh Y, Kudo T (2003) Phylogenetic position and in situ identification of exctosymbiotic spirochaetes on protists in the termite gut. Appl Environ Microbiol 69:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda S, Hongoh Y, Sato T, Okhuma M (2009) Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Brien RW, Breznak JA (1984) Enzymes of acetate and glucose metabolism in termites. Insect Biochem 14:639–643

    Article  Google Scholar 

  • Odelson DA, Breznak JA (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. App Environ Biol 49:614–621

    Article  CAS  Google Scholar 

  • Okhuma M, Noda S, Kudo T (1999) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934

    Article  Google Scholar 

  • Pasti MB, Pometto AL III, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of Actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56:2213–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. PNAS 78:4601–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putrins M, Tover A, Tegova R, Saks U, Kivisaar M (2007) Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida. Microbiology 152:1860–1871

    Article  CAS  Google Scholar 

  • Rahman NA, Parks DH, Willner DL, Engelbrekston AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P (2015) A molecular survey of Australian and north American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Sainsbury PD, Mineyeva Y, Mycroft Z, Bugg TD (2015) Chemical intervention in bacterial lignin degradation pathways: development of selective inhibitors for intradiol and extradiol catechol dioxygenases. Bioorg Chem 60:102–109

    Article  CAS  PubMed  Google Scholar 

  • Scheffrahn RH, Hsu R-C, Su N-Y, Huffman JB, Midland SL, Sims JJ (1988) Allelochemical resistance of bald cypress, Taxodium distichum, heartwood to the subterranean termite, Coptotermes formosanus. J Chem Ecol 14:765–776

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Lin J, Huang C (2009) Molecular detection and phylogenetic analysis of the catechol 1,2-dioxygenase gene from Gordonia spp. Syst Appl Microbiol 32:291–300

    Article  CAS  PubMed  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem 69:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Smith HE, Arnott HJ (1974) Epi- and endobiotic bacteria associated with Pyrsonympha vertrens, a symbiotic protozoon of the termite Reticulitermes flavipes. Trans Am Microsc Soc 93:180–194

    Article  CAS  PubMed  Google Scholar 

  • Stabler RM (1954) Trichomonas gallinae: a review. Exp Parasitol 3:368–402

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Ornston LN (1973) The Beta-ketoadipate pathway. Adv Microb Physiol 9:85–151

    Google Scholar 

  • Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ (2015) The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 81:1059–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:25–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian M, Du D, Zhou W, Zneng X, Cheng G (2017) Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Braz J Microbiol 48:305–313

    Article  CAS  PubMed  Google Scholar 

  • Van Dexter D, Boopathy R (2018) Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite. Environ Sci Pollut Res 26:34067. https://doi.org/10.1007/s11356-018-3292-4

    Article  CAS  Google Scholar 

  • Van Dexter S, Boopathy R (2019) Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite. Environ Sci Pollut Res 26:34067–34072.

    Article  CAS  Google Scholar 

  • Van Dexter D, Oubre C, Boopathy R (2019) Carbon ecology of termite gut and phenol degradation by a bacterium isolated from the gut of termite. J Ind Microbiol Biotechnol 46(9–10):1265–1271. (in Print)

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Tian T, Han B, Zhao HB, Bi J, Cai B (2007) Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J Environ Sci 19:222–225

    Article  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayoutte M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Otteson EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Shinzato N, Fukatsu T (2003) Isolation of Actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801

    Article  CAS  PubMed  Google Scholar 

  • Wenzel M, Schönig I, Berchtold M, Kämpfer P, König H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticolis. J Appl Microbiol 92:32–40

    Article  CAS  PubMed  Google Scholar 

  • Yamanashi T, Kim SY, Hara H, Funa N (2015) In vitro reconstitution of the catabolic reactions catalyzed by PcaHG, PcaB, and PcaL: the protocatechate branch of the β-ketoadipate pathway in Rhodococcus jostii RHA1. Biosci Biotechnol Biochem 79:830–835

    Article  CAS  PubMed  Google Scholar 

  • Yamin M (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl Environ Microbiol 39:859–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Lax AR, Bland JM, Yu J, Fedorova N, Nierman WC (2010) Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus. Insect Sci 17:245–252

    Article  CAS  Google Scholar 

  • Zheng H, Dietrich C, Radek R, Brune A (2016) Endomicrobium proavitum, the first isolate of Endomicrobia class. Nov. (phylum Elusimicrobia) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a group IV nitrogenase. Environ Microbiol 18:191–204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaraj Boopathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Dexter, S., Boopathy, R. (2020). Analysis of Termite Microbiome and Biodegradation of Various Phenolic Compounds by a Bacterium Isolated from the Termite gut in Louisiana, USA. In: Zakaria, Z., Boopathy, R., Dib, J. (eds) Valorisation of Agro-industrial Residues – Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39137-9_8

Download citation

Publish with us

Policies and ethics