Skip to main content
Log in

Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite

  • Appropriate Technologies to Combat Water Pollution
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The diet of wood-feeding termites (WFT) consists of cellulose, hemicellulose, and lignin. Cellulose and hemicellulose are utilized by symbiotic protozoa as a carbon source. Protozoa produce acetate, which is the carbon source of the termite. Recently, the mechanisms by which lignin is modified by termites have been reported. Lignin is broken down into its phenylpropanoid monomers and phenolic compounds. Bacteria from WFT gut capable of degrading lignin metabolic products are potentially valuable for bioremediation and biofuel production. A bacterium was isolated from the gut of the WFT and identified as Acinetobacter tandoii. This bacterium was capable of utilizing phenol as the sole carbon source and was able to completely degrade phenol at the concentration of 280 mg/L. A. tandoii degraded phenol via the ortho and β-ketoadipase pathway. This bacterium is a known phenol degrader, but to our knowledge, this is the first time it was isolated and tested for phenol-degrading ability from termites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anselmo AM, Novais JM (1984) Isolation and selection of phenol-degrading microorganisms from an industrial effluent. Biotechnol Lett 6:601–606

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for analysis of water and wastewater, 20th edn. American Public Health Association, Alexandria

    Google Scholar 

  • Barber MS, McConnell VS, DeCaux BS (2000) Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry 54:53–56

    Article  CAS  Google Scholar 

  • Beardmore-Gray M, Anthony C (1986) The oxidation of glucose by Acinetobacter calcoaceticus: interaction of the quinoprotein glucose dehydrogenase with the electron transport chain. J Gen Microbiol 132:1257–1268

    CAS  Google Scholar 

  • Beggs JD, Fewson CA (1977) Regulation and synthesis of benzyl alcohol dehydrogenase in Acinetobacter calcoaceticus NCIB8250. J Gen Microbiol 103:127–140

    Article  CAS  Google Scholar 

  • Bergey DH, Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, 2nd edn. 2:425–437

  • BIOLOG (2013) Gen III MicroPlate™ Instructions for Use. Biolog Inc, Hayward

    Google Scholar 

  • Boopathy R (1997) Anaerobic phenol degradation by microorganisms of swine manure. Curr Microbiol 35:64–67

    Article  CAS  Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

  • Carr EL, Kämpfer P, Patel BKC, Gürtler V, Seviour RJ (2003) Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 53:953–963

    Article  CAS  Google Scholar 

  • Coy MR, Salem TZ, Denton JS, Kovaleva ES, Liu Z, Barber DS, Campbell JH, Davis DC, Buchman GW, Boucias DG, Scharf ME (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40:723–732

    Article  CAS  Google Scholar 

  • Doolittle M, Raina A, Lax A, Boopathy R (2007) Effect of natural products on gut microbes in Formosan subterranean termite, Coptotermes formosanus. Int Biodeterior Biodegrad 59:69–71

    Article  CAS  Google Scholar 

  • Doolittle M, Raina A, Lax A, Boopathy R (2008) Presence of nitrogen fixing Klebsiella pneumoniae in the gut of the Formosan subterranean termite (Coptotermes formosanus). Bioresour Technol 99:3297–3300

    Article  CAS  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, del Mar Jimenez-Gasco M, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. PNAS 105:12932–12937

    Article  CAS  Google Scholar 

  • Harazono K, Yamashita N, Shinzato N, Watanabe Y, Fukatsu T, Kurane R (2003) Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci Biotechnol Biochem 67:889–892

    Article  CAS  Google Scholar 

  • Hayashi A, Aoyagi H, Yoshimura T, Tanaka H (2007) Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. J Biosci Bioeng 103:358–367

    Article  CAS  Google Scholar 

  • Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–1325

    Article  CAS  Google Scholar 

  • Hupert-Kocurek K, Guzik U, Wojcieszynska D (2012) Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration. Acta Biochim Pol 59:345–351

    Article  CAS  Google Scholar 

  • Hyodo F, Azuma J-i, Abe T (1999) Estimation of effect of passage through the gut of a lower termite, Coptotermes formosanus Shiraki, on lignin by solid-state CP/MAS 13C NMR. Holzforshung 53:244–246

    Article  CAS  Google Scholar 

  • Jiang H-L, Tay ST-L, Maszenan AM, Tay J-H (2006) Physiological characteristics of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microb Ecol 57:182–191

    Article  CAS  Google Scholar 

  • Jung J, Park W (2015) Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 99:2533–2548

    Article  CAS  Google Scholar 

  • Ke J, Singh D, Chen S (2011) Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). Int Biodeterior Biodegrad 65:744–756

    Article  CAS  Google Scholar 

  • Kuhnigk T, Borst E-M, Ritter A, Kämpfer P, Graf A, Hertel H, König H (1994) Degradation of lignin monomers by the hindgut flora of xylophagous insects. Syst Appl Microbiol 17:76–85

    Article  CAS  Google Scholar 

  • Paisio CE, Talano MA, González PS, Magallanes-Noguera C, Kurina-Sanz M, Agostini E (2016) Biotechnological tools to improve bioremediation of phenol by Acinetobacter sp. RTE1.4. Environ Technol 37:2379–2390

    Article  CAS  Google Scholar 

  • Papanastasiou AC (1982) Kinetics of the biodegradation of 2,4-dichlorophenoxy-acetate in the presence of glucose. Biotechnol Bioeng 24:2001–2011

    Article  CAS  Google Scholar 

  • Putrins M, Tover A, Tegova R, Saks U, Kivisaar M (2007) Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida. Microbiology 152:1860–1871

    Article  Google Scholar 

  • Rozich AF, Colvin RJ (1985) Effects of glucose on phenol biodegradation by heterogenous populations. Biotechnol Bioeng 28:965–971

    Article  Google Scholar 

  • Sainsbury PD, Mineyeva Y, Mycroft Z, Bugg TD (2015) Chemical intervention in bacterial lignin degradation pathways: development of selective inhibitors for intradiol and extradiol catechol dioxygenases. Bioorg Chem 60:102–109

    Article  CAS  Google Scholar 

  • Shen F, Lin J, Huang C (2009) Molecular detection and phylogenetic analysis of the catechol 1,2-dioxygenase gene from Gordonia spp. Syst Appl Microbiol 32:291–300

    Article  CAS  Google Scholar 

  • Stanier RY, Ornston LN (1973) The β-ketoadipate pathway. Adv Microb Physiol 9:89–151

  • Thangaraj K, Kapley A, Purohit HJ (2008) Characterization of diverse Acinetobacter isolates for utilization of multiple aromatic compounds. Bioresour Technol 99:2488–2494

    Article  CAS  Google Scholar 

  • Tian M, Du D, Zhou W, Zneng X, Cheng G (2017) Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Braz J Microbiol 48:305–313

    Article  CAS  Google Scholar 

  • Van Schie BJ, De Mooy OH, Linton JD, Van Dijken JP, Kuenen JG (1987) PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium, and Rhizobium species. J Gen Microbiol 133:867–875

    Google Scholar 

  • Wang Y, Tian T, Han B, Zhao HB, Bi J, Cai B (2007) Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J Environ Sci 19:222–225

    Article  CAS  Google Scholar 

  • Yamanashi T, Kim SY, Hara H, Funa N (2015) In vitro reconstitution of the catabolic reactions catalyzed by PcaHG, PcaB, and PcaL: the protocatechate branch of the β-ketoadipate pathway in Rhodococcus jostii RHA1. Biosci Biotechnol Biochem 79:830–835

    Article  CAS  Google Scholar 

  • Yamin M (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl Environ Microbiol 39:859–863

  • Yoshimura T, Fujino T, Itoh T, Tsunoda K, Takahashi M (1996) Ingestion and decomposition of wood and cellulose by the protozoa hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy. Holzforschung 50:99–104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the funds from the Louisiana Board of Regents and BP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Boopathy.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Dexter, S., Boopathy, R. Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite. Environ Sci Pollut Res 26, 34067–34072 (2019). https://doi.org/10.1007/s11356-018-3292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3292-4

Keywords

Navigation