Skip to main content

Separation of Carboxylic Acids: Conventional and Intensified Processes and Effects of Process Engineering Parameters

  • Chapter
  • First Online:
Valorization of Biomass to Value-Added Commodities

Part of the book series: Green Energy and Technology ((GREEN))

  • 764 Accesses

Abstract

Recent research thrust and industrial focus have been directed towards the production of platform chemicals and value-products from biomass-derived materials. However, downstream separation of these bio-based chemicals, particularly organic acids such as carboxylic acids, poses a great challenge due to low concentration in aqueous solutions. Various conventional separation processes have been proposed, but limitations from waste generation, large energy input and material requirements leading to high costs remain a challenge. Improved sustainability can be attained through intensified process separation with a reduction in production cost, equipment sizes, energy consumptions and flexibility of the process. The direct conversion of the acid in aqueous solutions to esters using hybrid reactors, wherein reaction and separation occur in one single process unit, has distinct but significant benefits to comparable applications. Future research on its operational performance requires attention to obtain parameters for process design and consequent corresponding scale-up to commercial production. Good knowledge of reaction kinetics is necessary to enhance process chemistry analysis, reaction parameter optimization, process efficiency and equilibrium studies of the separation process. This information will allow an assessment of the potential industrial applicability of the overall design and development of a sustainable biorefinery approach to value-added production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I.H. Aljundi, J.M. Belovich, O. Talu, Adsorption of lactic acid from fermentation broth and aqueous solutions on Zeolite molecular sieves. Chem. Eng. Sci. 60(18), 5004–5009 (2005)

    Article  Google Scholar 

  2. Y.S. Aşçi, I. Inci, A novel approach for itaconic acid extraction: Mixture of trioctylamine and tridodecylamine in different diluents. J. Ind. Eng. Chem. 18(5), 1705–1709 (2012)

    Article  Google Scholar 

  3. S.A. Ataei, E. Vasheghani-Farahani, In situ separation of lactic acid from fermentation broth using ion exchange resins. J. Ind. Microbiol. Biotechnol. 35(11), 1229–1233 (2008)

    Article  Google Scholar 

  4. P.M. Ayoub, Process for the reactive extractive extraction of levulinic acid. U.S. Patent 7,378,549 (2008)

    Google Scholar 

  5. D.K. Babi, P. Lutze, J.M. Woodley, R. Gani, A process synthesis-intensification framework for the development of sustainable membrane-based operations. Chem. Eng. Process. Process Intensif. 86, 173–195 (2014)

    Article  Google Scholar 

  6. M. Bishai, S. De, B. Adhikari, R. Banerjee, A platform technology of recovery of lactic acid from a fermentation broth of novel substrate Zizyphus oenophlia. 3 Biotech, 5(4), 455–463 (2014). https://doi.org/10.1007/s13205-014-0240-y

  7. M. Bishai, S. De, B. Adhikari, R. Banerjee, A platform technology of recovery of lactic acid from a fermentation broth of novel substrate Zizyphus oenophlia. 3 Biotech 5(4), 455–463 (2015)

    Article  Google Scholar 

  8. M. Blahušiak, Š. Schlosser, J. Cvengroš, Simulation of a new regeneration process of solvents with ionic liquid by short-path distillation. Sep. Purif. Technol. 97, 186–194 (2012)

    Article  Google Scholar 

  9. W. Boonkong, P. Sangvanich, A. Petsom, N. Thongchul, Comparison of an ion exchanger and an in-house electrodialysis unit for recovery of L-Lactic acid from fungal fermentation broth. Chem. Eng. Technol. 32(10), 1542–1549 (2009)

    Article  Google Scholar 

  10. X. Cao, H.S. Yun, Y.-M. Koo, Recovery of l-(+)-lactic acid by anion exchange resin Amberlite IRA-400. Biochem. Eng. J. 11(2–3), 189–196 (2002). https://doi.org/10.1016/S1369-703X(02)00024-4

    Article  Google Scholar 

  11. L.J. Carlson, Process for the manufacture of levulinic acid. U.S. Patent 3,065,263 (1962)

    Google Scholar 

  12. D. Cascaval, A.-I. Galaction, New extraction techniques on bioseparations: 1. Reactive extraction. Hemijska Industrija 58(9), 375–386 (2004)

    Article  Google Scholar 

  13. L. Chen, A. Zeng, H. Dong, Q. Li, C. Niu, A novel process for recovery and refining of L-lactic acid from fermentation broth. Bioresour. Technol. 112, 280–284 (2012)

    Article  Google Scholar 

  14. R. Chen, Y. Lee, Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass. Appl. Biochem. Biotechnol. 63(1), 435 (1997)

    Article  MathSciNet  Google Scholar 

  15. K.-K. Cheng, X.-B. Zhao, J. Zeng, R.-C. Wu, Y.-Z. Xu, D.-H. Liu, J.-A. Zhang, Downstream processing of biotechnological produced succinic acid. Appl. Microbiol. Biotechnol. 95(4), 841–850 (2012)

    Article  Google Scholar 

  16. A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107(6), 2411–2502 (2007)

    Article  Google Scholar 

  17. D. Datta, S. Kumar, H. Uslu, Status of the reactive extraction as a method of separation. J. Chem. 2015, 1–16 (2015)

    Article  Google Scholar 

  18. R.O. de Souza, L.S. Miranda, R. Luque, Bio (chemo) technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chem. 16(5), 2386–2405 (2014)

    Article  Google Scholar 

  19. J.L.W.C. Den Boestert, J.P. Haan, A. Nijmeijer, Process for permeation enhanced reactive extraction of levulinic acid. U.S. Patent 7,501,062 (2009)

    Google Scholar 

  20. U. Domańska, E.V. Lukoshko, M. Królikowski, Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate ([BMPYR][FAP]). Chem. Eng. J. 183, 261–270 (2012)

    Article  Google Scholar 

  21. L.K. Doraiswamy, Heterogeneous reactions: Analysis, examples, and reactor design. Gas-Solid Solid-Solid React 1, 43 (1984)

    Google Scholar 

  22. S. Eda, T.P. Kumar, B. Satyavathi, P. Sudhakar, R. Parthasarathy, Recovery of succinic acid by reactive extraction using tri-n-Octylamine in 1-Decanol: Equilibrium optimization using response surface method and kinetic studies. IJCST 1, 14 (2016)

    Google Scholar 

  23. S. Eda, R. Parthasarathy, T. Prathap Kumar, Reactive extraction of succinic acid from aqueous solutions using Tri-N-Octylamine (TOA) in 1-decanol: Equilibria and effect of temperature. (2015)

    Google Scholar 

  24. M. Errico, B.-G. Rong, Synthesis of new separation processes for bioethanol production by extractive distillation. Sep. Purif. Technol. 96, 58–67 (2012). https://doi.org/10.1016/j.seppur.2012.05.022

    Article  Google Scholar 

  25. B. Girisuta, Levulinic acid from lignocellulosic biomass. PhD thesis, Chemical engineering, University Library Groningen, 2007

    Google Scholar 

  26. M.I. González, S. Alvarez, F.A. Riera, R. Álvarez, Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228(1), 84–96 (2008). https://doi.org/10.1016/j.desal.2007.08.009

    Article  Google Scholar 

  27. A. Górak, A. Stankiewicz, Towards the sustainable world of 2050: European research agenda for process intensification. Chem. Ing. Tech. 84(8), 1260–1260 (2012). https://doi.org/10.1002/cite.201250050

    Article  Google Scholar 

  28. D.L. Grzenia, D.J. Schell, S.R. Wickramasinghe, Membrane extraction for removal of acetic acid from biomass hydrolysates. J. Membr. Sci. 322(1), 189–195 (2008)

    Article  Google Scholar 

  29. D.L. Grzenia, D.J. Schell, S.R. Wickramasinghe, Membrane extraction for detoxification of biomass hydrolysates. Bioresour. Technol. 111, 248–254 (2012)

    Article  Google Scholar 

  30. Z.-G. Guo, S.-R. Wang, Y.-Y. Zhu, Z.-Y. Luo, K.-F. Cen, Separation of acid compounds for refining biomass pyrolysis oil. J. Fuel Chem. Technol. 37(1), 49–52 (2009)

    Article  Google Scholar 

  31. Z. Guo, S. Wang, Y. Gu, G. Xu, X. Li, Z. Luo, Separation characteristics of biomass pyrolysis oil in molecular distillation. Sep. Purif. Technol. 76(1), 52–57 (2010)

    Article  Google Scholar 

  32. B.H. Davison, N.P. Nghiem, G.L. Richardson, Succinic acid adsorption from fermentation broth and regeneration. Appl. Biochem. Biotechnol 113–116, 653–669 (2004). https://doi.org/10.1385/ABAB:114:1-3:653

    Article  Google Scholar 

  33. V. Hábová, K. Melzoch, M. Rychtera, B. Sekavová, Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination 162, 361–372 (2004)

    Article  Google Scholar 

  34. I.J. Halvorsen, S. Skogestad, Energy efficient distillation. J. Nat. Gas Sci. Eng. 3(4), 571–580 (2011)

    Article  Google Scholar 

  35. G.J. Harmsen, G. Korevaar, S.M. Lemkowitz, Process intensification contributions to sustainable development. Chem. Ind. 98, 495–522 (2004)

    Google Scholar 

  36. L.G. Heding, J.K. Gupta, Improvement of conditions for precipitation of citric acid from fermentation mash. Biotechnol. Bioeng. 17(9), 1363–1364 (1975). https://doi.org/10.1002/bit.260170910

    Article  Google Scholar 

  37. J. Holtbruegge, S. Heile, P. Lutze, A. Górak, Synthesis of dimethyl carbonate and propylene glycol in a pilot-scale reactive distillation column: Experimental investigation, modeling and process analysis. Chem. Eng. J. 234, 448–463 (2013)

    Article  Google Scholar 

  38. Y. Hong, W. Hong, D. Han, Application of reactive extraction to recovery of carboxylic acids. Biotechnol. Bioprocess Eng. 6(6), 386–394 (2001). https://doi.org/10.1007/BF02932319

    Article  Google Scholar 

  39. H.-J. Huang, S. Ramaswamy, C. Bergeron, D.J. Carrier, S. Ramaswamy, Separation and purification of phytochemicals as co-products in biorefineries, in Biorefinery co-products, (John Wiley & Sons, Ltd, Chichester, 2012), pp. 37–53. https://doi.org/10.1002/9780470976692.ch3

    Chapter  Google Scholar 

  40. H.-J. Huang, S. Ramaswamy, U.W. Tschirner, B.V. Ramarao, A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 62(1), 1–21 (2008). https://doi.org/10.1016/j.seppur.2007.12.011

    Article  Google Scholar 

  41. H.J. Huang, S. Ramaswamy, Overview of biomass conversion processes and separation and purification technologies in biorefineries. Sep. Purif. Technol. Biorefineries, ch 1, 1–36 (2013). https://doi.org/10.1002/9781118493441

  42. Y.S. Huh, Y.-S. Jun, Y.K. Hong, H. Song, S.Y. Lee, W.H. Hong, Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem. 41(6), 1461–1465 (2006)

    Article  Google Scholar 

  43. S. Hyeon Kang, Y. Keun Chang, Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. J. Membr. Sci. 246(1), 49–57 (2005). https://doi.org/10.1016/j.memsci.2004.08.014

    Article  Google Scholar 

  44. M. Ingale, V. Mahajani, Recovery of carboxylic acids, C2·C6, from an aqueous waste stream using tributylphosphate (TBP): Effect of presence of inorganic acids and their sodium salts. Sep. Technol. 6(1), 1–7 (1996)

    Article  Google Scholar 

  45. T. Inoue, T. Nagase, Y. Hasegawa, Y. Kiyozumi, K. Sato, M. Nishioka, S. Hamakawa, F. Mizukami, Stoichiometric ester condensation reaction processes by pervaporative water removal via acid-tolerant zeolite membranes. Ind. Eng. Chem. Res. 46(11), 3743–3750 (2007)

    Article  Google Scholar 

  46. Z. Jin, S.T. Yang, Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici. Biotechnol. Prog. 14(3), 457–465 (1998)

    Article  Google Scholar 

  47. R.J. Jones, J. Massanet-Nicolau, A. Guwy, G.C. Premier, R.M. Dinsdale, M. Reilly, Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis. Bioresour. Technol. 189, 279–284 (2015)

    Article  Google Scholar 

  48. R.S. Juang, R.T. Wu, Effect of a water-insoluble organic acid on amine extraction of acetic acid from aqueous solutions. Equilibrium studies. J. Chem. Technol. Biotechnol. 66(2), 160–168 (1996)

    Article  Google Scholar 

  49. Y.-S. Jun, E.Z. Lee, Y.S. Huh, Y.K. Hong, W.H. Hong, S.Y. Lee, Kinetic study for the extraction of succinic acid with TOA in fermentation broth; effects of pH, salt and contaminated acid. Biochem. Eng. J. 36(1), 8–13 (2007). https://doi.org/10.1016/j.bej.2006.06.011

    Article  Google Scholar 

  50. Y.S. Jun, Y.S. Huh, W.H. Hong, Y.K. Hong, Kinetics of the extraction of succinic acid with tri-n-octylamine in 1-Octanol solution. Biotechnol. Prog. 21(6), 1673–1679 (2005)

    Article  Google Scholar 

  51. G. Kaur, K. Elst, Development of reactive extraction systems for itaconic acid: A step towards in situ product recovery for itaconic acid fermentation. RSC Adv. 4(85), 45029–45039 (2014)

    Article  Google Scholar 

  52. A. Keshav, S. Chand, K.L. Wasewar, Equilibrium studies for extraction of propionic acid using tri-n-butyl phosphate in different solvents. J. Chem. Eng. Data 53(7), 1424–1430 (2008a)

    Article  Google Scholar 

  53. A. Keshav, S. Chand, K.L. Wasewar, Recovery of propionic acid from aqueous phase by reactive extraction using quarternary amine (Aliquat 336) in various diluents. Chem. Eng. J. 152(1), 95–102 (2009a). https://doi.org/10.1016/j.cej.2009.03.037

    Article  Google Scholar 

  54. A. Keshav, K. Wasewar, S. Chand, Reactive extraction of propionic acid using tri-n-butyl phosphate in petroleum ether: Equilibrium study. Chem. Biochem. Eng. Q. 22(4), 433–437 (2008b)

    Google Scholar 

  55. A. Keshav, K.L. Wasewar, S. Chand, Extraction of propionic acid from model solutions: Effect of pH, salts, substrate, and temperature. AICHE J. 55(7), 1705–1711 (2009b)

    Article  Google Scholar 

  56. A. Keshav, K.L. Wasewar, S. Chand, Reactive extraction of propionic acid using Aliquat 336 in MIBK: Linear solvation energy relationship (LSER) modeling and kinetics study. J. Sci. Ind. Res. 68(8), 708 (2009c)

    Google Scholar 

  57. A. Keshav, K.L. Wasewar, S. Chand, Recovery of propionic acid by reactive extraction-1. Equilibrium, effect of pH and temperature, water coextraction. Desalin. Water Treat. 3(1–3), 91–98 (2009d)

    Article  Google Scholar 

  58. A. Keshav, K.L. Wasewar, S. Chand, Recovery of propionic acid from an aqueous stream by reactive extraction: Effect of diluents. Desalination 244(1–3), 12–23 (2009e). https://doi.org/10.1016/j.desal.2008.04.032

    Article  Google Scholar 

  59. A. Keshav, K.L. Wasewar, S. Chand, H. Uslu, Effect of binary extractants and modifier–diluents systems on equilbria of propionic acid extraction. Fluid Phase Equilib. 275(1), 21–26 (2009f). https://doi.org/10.1016/j.fluid.2008.09.012

    Article  Google Scholar 

  60. C.J. King, Amine-based systems for carboxylic acid recovery. Chemtech 22(5), 285–291 (1992)

    Google Scholar 

  61. C.J. King, L.J. Poole, Carboxylic acid sorption regeneration process. U.S. Patent 5,412,126 (1995)

    Google Scholar 

  62. A. Komesu, P. Martins Martinez, B. Lunelli, R. Filho, M. Maciel, Lactic acid purification by reactive distillation system using design of experiments. Chem. Eng. Process. 95, 26–30 (2015). https://doi.org/10.1016/j.cep.2015.05.005

    Article  Google Scholar 

  63. R. Kumar, S. Mahajani, H. Nanavati, S. B Noronha, Recovery of lactic acid by batch reactive distillation. Chem. Eng. Process. Process Intensif. 95, 26–30 (2006a). https://doi.org/10.1002/jctb.1444

    Article  Google Scholar 

  64. R. Kumar, H. Nanavati, S.B. Noronha, S.M. Mahajani, A continuous process for the recovery of lactic acid by reactive distillation. J. Chem. Technol. Biotechnol. 81(11), 1767–1777 (2006b)

    Article  Google Scholar 

  65. S. Kumar, B. Babu, Reactive extraction of propionic acid with aliquat 336 dissolved in 1-decanol and n-dodecane. J. Future Eng. Technol. 3, 21–27 (2008)

    Google Scholar 

  66. T.P. Kumar, B. Vishwanadham, K.P. Rani, M. Mallikarjun, V.B. Rao, Reactive extraction of levulinic acid from aqueous solutions with tri-n-octylamine (TOA) in 1-octanol: Equilibria, kinetics, and model development. Chem. Eng. Commun. 198(4), 572–589 (2010)

    Article  Google Scholar 

  67. T. Kurzrock, D. Weuster-Botz, Recovery of succinic acid from fermentation broth. Biotechnol. Lett. 32(3), 331–339 (2010)

    Article  Google Scholar 

  68. H. Lateef, A. Gooding, S. Grimes, Use of 1-hexyl-3-methylimidazolium bromide ionic liquid in the recovery of lactic acid from wine. J. Chem. Technol. Biotechnol. 87(8), 1066–1073 (2012). https://doi.org/10.1002/jctb.3843

    Article  Google Scholar 

  69. S.C. Lee, H.C. Kim, Batch and continuous separation of acetic acid from succinic acid in a feed solution with high concentrations of carboxylic acids by emulsion liquid membranes. J. Membr. Sci. 367(1), 190–196 (2011)

    Article  Google Scholar 

  70. Q. Li, D. Wang, Y. Wu, W. Li, Y. Zhang, J. Xing, Z. Su, One step recovery of succinic acid from fermentation broths by crystallization. Sep. Purif. Technol. 72(3), 294–300 (2010). https://doi.org/10.1016/j.seppur.2010.02.021

    Article  Google Scholar 

  71. C.S. López-Garzón, A.J.J. Straathof, Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 32(5), 873–904 (2014). https://doi.org/10.1016/j.biotechadv.2014.04.002

    Article  Google Scholar 

  72. S. Luque, J.R. Alvarez, C. Pazos, J. Coca, Recovery of valeric acid from aqueous solutions by solvent extraction. Solvent Extr. Ion Exch. 13(5), 923–940 (1995)

    Article  Google Scholar 

  73. P. Lutze, A. Gorak, Reactive and membrane-assisted distillation: Recent developments and perspective. Chem. Eng. Res. Des. 91(10), 1978–1997 (2013)

    Article  Google Scholar 

  74. G. Madenoor Ramapriya, M. Tawarmalani, R. Agrawal, Thermal coupling links to liquid-only transfer streams: A path for new dividing wall columns. AICHE J. 60(8), 2949–2961 (2014)

    Article  Google Scholar 

  75. F. Mao, G. Zhang, J. Tong, T. Xu, Y. Wu, Anion exchange membranes used in diffusion dialysis for acid recovery from erosive and organic solutions. Sep. Purif. Technol. 122, 376–383 (2014)

    Article  Google Scholar 

  76. M. Marinova, J. Albet, J. Molinier, G. Kyuchoukov, Specific influence of the modifier (1-decanol) on the extraction of tartaric acid by different extractants. Ind. Eng. Chem. Res. 44(17), 6534–6538 (2005)

    Article  Google Scholar 

  77. J. Marták, Š. Schlosser, Extraction of lactic acid by phosphonium ionic liquids. Sep. Purif. Technol. 57(3), 483–494 (2007)

    Article  Google Scholar 

  78. M.E. Martı, Recovery of formic acid by reactive extraction using an environmentally friendly solvent. Selcuk University Journal of Engineering, Science & Technology 5.1 26–37 (2017)

    Google Scholar 

  79. M.E. Marti, T. Gurkan, L.K. Doraiswamy, Equilibrium and kinetic studies on reactive extraction of pyruvic acid with trioctylamine in 1-octanol. Ind. Eng. Chem. Res. 50(23), 13518–13525 (2011). https://doi.org/10.1021/ie200625q

    Article  Google Scholar 

  80. G. Maurer, Modeling the liquid–liquid equilibrium for the recovery of carboxylic acids from aqueous solutions. Fluid Phase Equilib. 241(1–2), 86–95 (2006). https://doi.org/10.1016/j.fluid.2005.11.005

    Article  Google Scholar 

  81. B. Max, J.M. Salgado, N. Rodríguez, S. Cortés, A. Converti, J.M. Domínguez, Biotechnological production of citric acid. Braz. J. Microbiol. 41(4), 862–875 (2010)

    Article  Google Scholar 

  82. J.-P. Mikkola, P. Virtanen, R. Sjöholm, Aliquat 336®—A versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids. Green Chem. 8(3), 250–255 (2006)

    Article  Google Scholar 

  83. D.-J. Min, K.H. Choi, Y.K. Chang, J.-H. Kim, Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth. Korean J. Chem. Eng. 28(10), 1969 (2011)

    Article  Google Scholar 

  84. M.T. Musser. Cyclohexanol and cyclohexanone. Ullmann’s encyclopedia of industrial chemistry. (2000). https://doi.org/10.1002/14356007.a08_217.pub2

  85. S. Naik, V.V. Goud, P.K. Rout, A.K. Dalai, Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 14(2), 578–597 (2010)

    Article  Google Scholar 

  86. R.S. Nelson, D.J. Peterson, E.M. Karp, G.T. Beckham, D. Salvachúa, Mixed carboxylic acid production by Megasphaera elsdenii from glucose and lignocellulosic hydrolysate. Fermentation 3(1), 10 (2017)

    Article  Google Scholar 

  87. F.S. Oliveira, J.M. Araújo, R. Ferreira, L.P.N. Rebelo, I.M. Marrucho, Extraction of l-lactic, l-malic, and succinic acids using phosphonium-based ionic liquids. Sep. Purif. Technol. 85, 137–146 (2012)

    Article  Google Scholar 

  88. A. Orjuela, A.J. Yanez, L. Peereboom, C.T. Lira, D.J. Miller, A novel process for recovery of fermentation-derived succinic acid. Sep. Purif. Technol. 83(0), 31–37 (2011). https://doi.org/10.1016/j.seppur.2011.08.010

    Article  Google Scholar 

  89. C. Park, H.-G. Nam, K.B. Lee, S. Mun, Optimal design and experimental validation of a simulated moving bed chromatography for continuous recovery of formic acid in a model mixture of three organic acids from Actinobacillus bacteria fermentation. J. Chromatogr. A 1365, 106–114 (2014)

    Article  Google Scholar 

  90. E.C. Peterson, A.J. Daugulis, Demonstration of in situ product recovery of butyric acid via CO2-facilitated pH swings and medium development in two-phase partitioning bioreactors. Biotechnol. Bioeng. 111(3), 537–544 (2014)

    Article  Google Scholar 

  91. F.A. Poposka, K. Nikolovski, R. Tomovska, Kinetics, mechanism and mathematical modelling of extraction of citric acid with isodecanol/n-paraffins solutions of trioctylamine. Chem. Eng. Sci. 53(18), 3227–3237 (1998)

    Article  Google Scholar 

  92. D.W. Rackemann, W.O. Doherty, The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefin. 5(2), 198–214 (2011)

    Article  Google Scholar 

  93. A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, J.P. Hallett, D.J. Leak, C.L. Liotta, The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006)

    Article  Google Scholar 

  94. V.B. Rao, P.S. Kumar, C. Sailu, S.R.M. Rao, Recovery of lactic acid by reactive distillation. J. Appl. Sci. 14(12), 1289 (2014)

    Article  Google Scholar 

  95. D. Reay, C. Ramshaw, A. Harvey, Process Intensification: Engineering for Efficiency, Sustainability and Flexibility (Butterworth-Heinemann, Amsterdam, 2013)

    Book  Google Scholar 

  96. G.G. Redhi, I. Bahadur, N.M. Xhakaza, Liquid–liquid equilibria measurements of ternary systems (acetonitrile+ a carboxylic acid+ dodecane) at 303.15 K. Fluid Phase Equilib. 388, 1–5 (2015). https://doi.org/10.1016/j.fluid.2014.12.013

  97. Y.-P. Ren, J.-J. Wang, X.-F. Li, X.-H. Wang, Reactive extraction of short-chain fatty acids from synthetic acidic fermentation broth of organic solid wastes and their stripping. J. Chem. Eng. Data 57(1), 46–51 (2011)

    Article  Google Scholar 

  98. F. Seibert, A method of recovering levulinic acid. WO 2010/030617 A1. (2010)

    Google Scholar 

  99. A. Senol, Optimum extraction equilibria of the systems (water+ carboxylic acid+ 1-hexanol/Alamine): Thermodynamic modeling. Fluid Phase Equilib. 360, 77–87 (2013)

    Article  Google Scholar 

  100. M. Shah, A.A. Kiss, E. Zondervan, A.B. de Haan, Evaluation of configuration alternatives for multi-product polyester synthesis by reactive distillation. Comput. Chem. Eng. 52, 193–203 (2013)

    Article  Google Scholar 

  101. A. Singh, A. Tiwari, S.M. Mahajani, R.D. Gudi, Recovery of acetic acid from aqueous solutions by reactive distillation. Ind. Eng. Chem. Res. 45(6), 2017–2025 (2006). https://doi.org/10.1021/ie0505514

    Article  Google Scholar 

  102. A. Stankiewicz, Reactive separations for process intensification: An industrial perspective. Chem. Eng. Process. Process Intensif. 42(3), 137–144 (2003)

    Article  Google Scholar 

  103. A. Stankiewicz, J.A. Moulijn, Process intensification. Ind. Eng. Chem. Res. 41(8), 1920–1924 (2002). https://doi.org/10.1021/ie011025p

    Article  Google Scholar 

  104. A.I. Stankiewicz, J.A. Moulijn, Process intensification: Transforming chemical engineering. Chem. Eng. Prog. 96(1), 22–34 (2000)

    Google Scholar 

  105. A. Straathof, The proportion of downstream costs in fermentative production processes. Compr. Biotechnol. 2, 811–814 (2011)

    Google Scholar 

  106. X. Sun, H. Luo, S. Dai, Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 112(4), 2100–2128 (2011)

    Article  Google Scholar 

  107. J.A. Tamada, C.J. King, Extraction of carboxylic acids with amine extractants. 3. Effect of temperature, water coextraction, and process considerations. Ind. Eng. Chem. Res. 29(7), 1333–1338 (1990)

    Article  Google Scholar 

  108. N. Thakre, D. Datta, A. Prajapati, P. Chaudhari, D. Pal, Reactive extraction of citric acid using different extractants: Equilibrium, kinetics and modeling. Chem. Biochem. Eng. Q. 31(4), 437–446 (2018)

    Article  Google Scholar 

  109. N. Thakre, A.K. Prajapati, S.P. Mahapatra, A. Kumar, A. Khapre, D. Pal, Modeling and optimization of reactive extraction of citric acid. J. Chem. Eng. Data 61(7), 2614–2623 (2016)

    Article  Google Scholar 

  110. N. Tik, E. Bayraktar, Ü. Mehmetoglu, In situ reactive extraction of lactic acid from fermentation media. J. Chem. Technol. Biotechnol. 76(7), 764–768 (2001)

    Article  Google Scholar 

  111. W.-Y. Tong, X.-Y. Fu, S.-M. Lee, J. Yu, J.-W. Liu, D.-Z. Wei, Y.-M. Koo, Purification of l(+)-lactic acid from fermentation broth with paper sludge as a cellulosic feedstock using weak anion exchanger Amberlite IRA-92. Biochem. Eng. J. 18(2), 89–96 (2004). https://doi.org/10.1016/S1369-703X(03)00170-0

    Article  Google Scholar 

  112. C. Umpuch, S. Sakeaw, S. Kanchanatawee, K. Jantama, Removal of contaminated organic acids from simulated succinic acid fermentation broth by reactive extraction process: Single-and mixed-solute solution. Sep. Sci. Technol. 51(4), 629–640 (2016)

    Article  Google Scholar 

  113. H. Uslu, Reactive extraction of formic acid by using tri Octyl amine (TOA). Sep. Sci. Technol. 44(8), 1784–1798 (2009). https://doi.org/10.1080/01496390902775893

    Article  Google Scholar 

  114. H. Uslu, A. Gök, Ş.İ. Kırbaşlar, Phase equilibria of (water+levunilic acid+alcohol) ternary systems. Fluid Phase Equilib. 273(1–2), 21–26 (2008). https://doi.org/10.1016/j.fluid.2008.08.004

    Article  Google Scholar 

  115. D. Van Baelen, B. Van der Bruggen, K. Van den Dungen, J. Degrève, C. Vandecasteele, Pervaporation of water–alcohol mixtures and acetic acid–water mixtures. Chem. Eng. Sci. 60(6), 1583–1590 (2005)

    Article  Google Scholar 

  116. T. Van Gerven, A. Stankiewicz, Structure, energy, synergy, time—The fundamentals of process intensification. Ind. Eng. Chem. Res. 48(5), 2465–2474 (2009a). https://doi.org/10.1021/ie801501y

    Article  Google Scholar 

  117. T. Van Gerven, A. Stankiewicz, Structure, energy, synergy, time·The fundamentals of process intensification. Ind. Eng. Chem. Res. 48(5), 2465–2474 (2009b)

    Article  Google Scholar 

  118. L.M. Vane, A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol. 80(6), 603–629 (2005)

    Article  Google Scholar 

  119. M.D. Waghmare, K.L. Wasewar, S.S. Sonawane, D.Z. Shende, Natural nontoxic solvents for recovery of picolinic acid by reactive extraction. Ind. Eng. Chem. Res. 50(23), 13526–13537 (2011)

    Article  Google Scholar 

  120. J. Wang, Y. Pei, Y. Zhao, Z. Hu, Recovery of amino acids by imidazolium based ionic liquids from aqueous media. Green Chem. 7(4), 196–202 (2005)

    Article  Google Scholar 

  121. K. Wang, Z. Chang, Y. Ma, C. Lei, S. Jin, Y. Wu, I. Mahmood, C. Hua, H. Liu, Equilibrium study on reactive extraction of propionic acid with N1923 in different diluents. Fluid Phase Equilib. 278(1), 103–108 (2009a)

    Article  Google Scholar 

  122. S. Wang, Y. Gu, Q. Liu, Y. Yao, Z. Guo, Z. Luo, K. Cen, Separation of bio-oil by molecular distillation. Fuel Process. Technol. 90(5), 738–745 (2009b)

    Article  Google Scholar 

  123. X. Wang, Y. Wang, X. Zhang, H. Feng, T. Xu, In-situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: Continuous operation. Bioresour. Technol. 147, 442–448 (2013)

    Article  Google Scholar 

  124. Y. Wang, J. Nie, M. Zhao, S. Ma, L. Kuang, X. Han, S. Tang, Production of biodiesel from waste cooking oil via a two-step catalyzed process and molecular distillation. Energy Fuels 24(3), 2104–2108 (2010)

    Article  Google Scholar 

  125. K.L. Wasewar, Separation of lactic acid: Recent advances. Chem. Biochem. Eng. Q. 19(2), 159–172 (2005)

    Google Scholar 

  126. K.L. Wasewar, A.B.M. Heesink, G.F. Versteeg, V.G. Pangarkar, Equilibria and kinetics for reactive extraction of lactic acid using Alamine 336 in decanol. J. Chem. Technol. Biotechnol. 77(9), 1068–1075 (2002a)

    Article  Google Scholar 

  127. K.L. Wasewar, A.B.M. Heesink, G.F. Versteeg, V.G. Pangarkar, Reactive extraction of lactic acid using alamine 336 in MIBK: Equilibria and kinetics. J. Biotechnol. 97(1), 59–68 (2002b). https://doi.org/10.1016/S0168-1656(02)00057-3

    Article  Google Scholar 

  128. K.L. Wasewar, D. Shende, A. Keshav, Reactive extraction of itaconic acid using quaternary amine Aliquat 336 in ethyl acetate, toluene, hexane, and kerosene. Ind. Eng. Chem. Res. 50(2), 1003–1011 (2010)

    Article  Google Scholar 

  129. K.L. Wasewar, D. Shende, A. Keshav, Reactive extraction of itaconic acid using tri-n-butyl phosphate and aliquat 336 in sunflower oil as a non-toxic diluent. J. Chem. Technol. Biotechol. 86(2), 319–323 (2011)

    Article  Google Scholar 

  130. K.L. Wasewar, A.A. Yawalkar, J.A. Moulijn, V.G. Pangarkar, Fermentation of glucose to lactic acid coupled with reactive extraction: A review. Ind. Eng. Chem. Res. 43(19), 5969–5982 (2004)

    Article  Google Scholar 

  131. K.L. Wasewar, C.K. Yoo, Intensifying the recovery of carboxylic acids by reactive extraction. In: Proceedings of 3rd International Conference on Chemistry and Chemical Engineering, June, 2012. pp. 29–30 (2012)

    Google Scholar 

  132. Ö. Yildirim, A.A. Kiss, E.Y. Kenig, Dividing wall columns in chemical process industry: A review on current activities. Sep. Purif. Technol. 80(3), 403–417 (2011)

    Article  Google Scholar 

  133. A. Yousuf, F. Bonk, J.-R. Bastidas-Oyanedel, J.E. Schmidt, Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon. Bioresour. Technol. 217, 137–140 (2016)

    Article  Google Scholar 

  134. J. Zhou, W. Bi, K.H. Row, Purification of lactic acid from fermentation broth by spherical anion exchange polymer. J. Appl. Polym. Sci. 120(5), 2673–2677 (2011)

    Article  Google Scholar 

  135. J. Zigová, E. Šturdı́k, D. Vandák, Š. Schlosser, Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochem. 34(8), 835–843 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inyang, V.M., Lokhat, D. (2020). Separation of Carboxylic Acids: Conventional and Intensified Processes and Effects of Process Engineering Parameters. In: Daramola, M., Ayeni, A. (eds) Valorization of Biomass to Value-Added Commodities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-38032-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38032-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38031-1

  • Online ISBN: 978-3-030-38032-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics