Skip to main content

Role of Process Intensification in Enzymatic Transformation of Biomass into High-Value Chemicals

  • Chapter
  • First Online:
Biotechnological Innovations for Environmental Bioremediation
  • 943 Accesses

Abstract

With an increased emphasis on green processing methods and a move beyond the use of petrochemical feedstock, it has become important to develop processes to maximize the utilization of existing resources. Biomass is a renewable and abundant source of fuels and chemicals. Enzyme-assisted valorization of biomass is a sustainable alternative to chemical routes due to the superior properties of enzymes such as high enantioselectivity and ability to operate under mild conditions. However, the challenges associated with enzyme de-activation and reusability often limit the application of enzyme catalysis on a commercial scale. This can be circumvented by immobilizing enzymes, which allow for easy recovery and reuse and higher storage and operational stability. Supported enzyme catalysis requires increased mixing, increasing energy costs, and catalyst disintegration, which until now limit the application of conventional batch reactor design. Process intensification (PI) is becoming increasingly popular in the chemical process industry as it allows for better control of chemical reactions on a molecular scale, resulting in enhanced reaction rate and minimizing waste generation. Recent advances in PI reactors such as micro-, membrane, and spinning disk reactors have increased the applicability of enzyme catalysis for production of high-value chemicals. This chapter will focus on enzyme-catalyzed valorization of biomass into high-value products using PI technologies for applications in the fine chemical industries. Opportunities and challenges for the commercialization of these technologies for the application on an industrial scale will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnoldi Pellegrini VDO, Veiga Sepulchro AG, Polikarpov I (2020) Enzymes for lignocellulosic biomass polysaccharide valorization and production of nanomaterials. Curr Opin Green Sustainable Chem 26:100397

    Article  Google Scholar 

  • Bahadorikhalili S, Mahdavi H (2018) Palladium magnetic nanoparticle-polyethersulfone composite membrane as an efficient and versatile catalytic membrane reactor. Polym Adv Technol 29:1138–1149

    Article  CAS  Google Scholar 

  • Batistella L, Lerin LA, Brugnerotto P, Danielli AJ, Trentin CM, Popiolski A, Treichel H, Oliveira JV, De Oliveira D (2012) Ultrasound-assisted lipase-catalyzed transesterification of soybean oil in organic solvent system. Ultrason Sonochem 19:452–458

    Article  CAS  PubMed  Google Scholar 

  • Borukhova S, Hessel V (2013) Micro process technology and novel process windows–three intensification fields. In: Process intensification for green chem. Wiley, Hoboken, pp 91–156

    Chapter  Google Scholar 

  • Busse N, Kraume M, Czermak P (2017) Modeling the design and operational mode of a continuous membrane reactor for enzymatic lignin modification. Biochem Eng J 124:88–98

    Article  CAS  Google Scholar 

  • Carvalho F, Fernandes P (2015) Packed bed enzyme microreactor: application in sucrose hydrolysis as proof-of-concept. Biochem Eng J 104:74–81

    Article  CAS  Google Scholar 

  • Carvalho F, Marques MP, Fernandes P (2017) Sucrose hydrolysis in a bespoke capillary wall-coated microreactor. Catalysts 7:42

    Article  CAS  Google Scholar 

  • Cheng C-H, Du T-B, Pi H-C, Jang S-M, Lin Y-H, Lee H-T (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 102:10151–10153

    Article  CAS  PubMed  Google Scholar 

  • Cho EJ, Trinh LTP, Song Y, Lee YG, Bae H-J (2020) Bioconversion of biomass waste into high value chemicals. Bioresour Technol 298:122386

    Article  CAS  PubMed  Google Scholar 

  • Cvjetko M, Vorkapić-Furač J, Žnidaršič-Plazl P (2012) Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor. Process Biochem 47:1344–1350

    Article  CAS  Google Scholar 

  • De Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL (2005) Understanding structure− stability relationships of Candida antartica lipase B in ionic liquids. Biomacromolecules 6:1457–1464

    Article  PubMed  CAS  Google Scholar 

  • De Lathouder KM, Bakker JJW, Kreutzer MT, Wallin SA, Kapteijn F, Moulijn JA (2006) Structured reactors for enzyme immobilization: a monolithic stirrer reactor for application in organic media. Chem Eng Res Des 84:390–398

    Article  CAS  Google Scholar 

  • Denčić I, Noël T, Meuldijk J, De Croon M, Hessel V (2013) Micro reaction technology for valorization of biomolecules using enzymes and metal catalysts. Eng Life Sci 13:326–343

    Article  CAS  Google Scholar 

  • Dudukovic MP (2010) Reaction engineering: Status and future challenges. Chem Eng Sci 65:3–11

    Article  CAS  Google Scholar 

  • Fiametti KG, Sychoski MM, De Cesaro A, Furigo A Jr, Bretanha LC, Pereira CM, Treichel H, De Oliveira D, Oliveira JV (2011) Ultrasound irradiation promoted efficient solvent-free lipase-catalyzed production of mono-and diacylglycerols from olive oil. Ultrason Sonochem 18:981–987

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez MI, Alvarez S, Riera FA, Álvarez R (2008) Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228:84–96

    Article  CAS  Google Scholar 

  • Gorak A, Stankiewicz A (2011) Intensified reaction and separation systems. Annu Rev Chem Biomol Eng 2:431–451

    Article  CAS  PubMed  Google Scholar 

  • Harmsen J (2013a) Implementation of process intensification in industry. In Proc intensification for green chem: eng sol for sustainable chem proc, pp 393–400

    Google Scholar 

  • Harmsen J (2013b) Process economics and environmental impacts of process intensification in the petrochemicals, fine chemicals and pharmaceuticals industries. In Proc intensification for green chem: eng sol for sustainable chem proc, pp 369–378

    Google Scholar 

  • Hommes A, Heeres HJ, Yue J (2019) Catalytic transformation of biomass derivatives to value-added chemicals and fuels in continuous flow microreactors. Chem Cat Chem 11:4671–4708

    CAS  Google Scholar 

  • Illner S, Hofmann C, Löb P, Kragl U (2014) A falling-film microreactor for enzymatic oxidation of glucose. Chem Cat Chem 6:1748–1754

    CAS  Google Scholar 

  • Indra Neel P, Gedanken A, Schwarz R, Sendersky E (2012) Mild sonication accelerates ethanol production by yeast fermentation. Energy Fuel 26:2352–2356

    Article  CAS  Google Scholar 

  • Kadkhodaee R, Povey MJ (2008) Ultrasonic inactivation of Bacillus α-amylase. I. Effect of gas content and emitting face of probe. Ultrason Sonochem 15:133–142

    Article  CAS  PubMed  Google Scholar 

  • Kawakami K, Abe D, Urakawa T, Kawashima A, Oda Y, Takahashi R, Sakai S (2007) Development of a silica monolith microbioreactor entrapping highly activated lipase and an experiment toward integration with chromatographic separation of chiral esters. J Sep Sci 30:3077–3084

    Article  CAS  PubMed  Google Scholar 

  • Kawakami K, Takahashi R, Shakeri M, Sakai S (2009) Application of a lipase-immobilized silica monolith bioreactor to the production of fatty acid methyl esters. J Mol Catal B Enzym 57:194–197

    Article  CAS  Google Scholar 

  • Kawakami K, Ueno M, Takei T, Oda Y, Takahashi R (2012) Application of a Burkholderia cepacia lipase-immobilized silica monolith micro-bioreactor to continuous-flow kinetic resolution for transesterification of (R, S)-1-phenylethanol. Process Biochem 47:147–150

    Article  CAS  Google Scholar 

  • Khan B, Günther A, Schmidt MA, Jensen KF (2004) Langmuir 20:8604

    Article  CAS  PubMed  Google Scholar 

  • King Pm NK, Joyce E, Mason T (2012) Ultrasonic disruption of algae cells. AIP Conf Proc 2012:237–240

    Article  CAS  Google Scholar 

  • Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Garcia IL, Kookos IK, Papanikolaou S, Kwan TH, Lin CSK (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Reddy C, Jha B (2011) Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal Biochem 415:134–144

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Bhangale AS, Wallace WE, Flynn KM, Guttman CM, Gross RA, Beers KL (2011) Continuous flow enzyme-catalyzed polymerization in a microreactor. J Am Chem Soc 133:6006–6011

    Article  CAS  PubMed  Google Scholar 

  • Leak DJ, Feng X, Emanuelsson EA (2014) Enzyme biotransformations and reactors. In: Chemical processes for a sustainable future. Royal Society of Chemistry, London

    Google Scholar 

  • Li Y, Shahbazi A (2006) Lactic acid recovery from cheese whey fermentation broth using combined ultrafiltration and nanofiltration membranes. In: Twenty-seventh symposium on biotechnology for fuels and chemicals. Springer, New York, pp 985–996

    Chapter  Google Scholar 

  • Li Q, Ji G-S, Tang Y-B, Gu X-D, Fei J-J, Jiang H-Q (2012) Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous–N-methylmorpholine-N-oxide system for improved saccharification. Bioresour Technol 107:251–257

    Article  CAS  PubMed  Google Scholar 

  • Lim SY, Ghazali NF (2020) Product removal strategy and fouling mechanism for cellulose hydrolysis in enzymatic membrane reactor. Waste Biomass Valoriz 2020:1–16

    Google Scholar 

  • Lopez P, Sala FJ, De La Fuente JL, Condon S, Raso J, Burgos J (1994) Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. J Agric Food Chem 42:252–256

    Article  CAS  Google Scholar 

  • Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93

    Article  Google Scholar 

  • Magnacca G, Laurenti E, Vigna E, Franzoso F, Tomasso L, Montoneri E, Boffa V (2012) Refuse derived bio-organics and immobilized soybean peroxidase for green chemical technology. Process Biochem 47:2025–2031

    Article  CAS  Google Scholar 

  • Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49

    Article  Google Scholar 

  • Mittmann E, Gallus S, Bitterwolf P, Oelschlaeger C, Willenbacher N, Niemeyer CM, Rabe KS (2019) A phenolic acid decarboxylase-based all-enzyme hydrogel for flow reactor technology. Micromachines 10:795

    Article  PubMed Central  Google Scholar 

  • Ngamsom B, Hickey A, Greenway G, Littlechild J, Watts P, Wiles C (2010) Development of a high throughput screening tool for biotransformations utilising a thermophilic l-aminoacylase enzyme. J Mol Catal B Enzym 63:81–86

    Article  CAS  Google Scholar 

  • Pal P, Sikder J, Roy S, Giorno L (2009) Process intensification in lactic acid production: a review of membrane based processes. Chem Eng Process 48:1549–1559

    Article  CAS  Google Scholar 

  • Plakas K, Mantza A, Sklari S, Zaspalis V, Karabelas A (2019) Heterogeneous Fenton-like oxidation of pharmaceutical diclofenac by a catalytic iron-oxide ceramic microfiltration membrane. Chem Eng J 373:700–708

    Article  CAS  Google Scholar 

  • Pohar A, Plazl I, Žnidaršič-Plazl P (2009) Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n-heptane two-phase system at the microreactor scale. Lab Chip 9:3385–3390

    Article  CAS  PubMed  Google Scholar 

  • Sandig B, Buchmeiser MR (2016) Highly productive and enantioselective enzyme catalysis under continuous supported liquid–liquid conditions using a hybrid monolithic bioreactor. ChemSusChem 9:2917–2921

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad P, Emanuelsson EAC (2018) Process intensification of immobilized enzyme reactors. Intensificat Biobased Proc 55:249

    Article  CAS  Google Scholar 

  • Shivaprasad P, Jones MD, Patterson DA, Emanuelsson EAC (2017) Process intensification of catalysed henry reaction using copper-wool catalyst in a spinning mesh disc reactor. Chem Eng Process 3:122

    Google Scholar 

  • Souza M, Mezadri ET, Zimmerman E, Leaes EX, Bassaco MM, Dal Prá V, Foletto E, Cancellier A, Terra LM, Jahn SL (2013) Evaluation of activity of a commercial amylase under ultrasound-assisted irradiation. Ultrason Sonochem 20:89–94

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz AI, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Prog 96:22–34

    CAS  Google Scholar 

  • Torras C, Nabarlatz D, Vallot G, Montané D, Garcia-Valls R (2008) Composite polymeric membranes for process intensification: enzymatic hydrolysis of oligodextrans. Chem Eng J 144:259–266

    Article  CAS  Google Scholar 

  • Tupufia SC, Jeon YJ, Marquis C, Adesina AA, Rogers PL (2013) Enzymatic conversion of coconut oil for biodiesel production. Fuel Process Technol 106:721–726

    Article  CAS  Google Scholar 

  • Velmurugan R, Muthukumar K (2012) Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochem Eng J 63:1–9

    Article  CAS  Google Scholar 

  • Wang G, Wang T (2012) Lipid and biomass distribution and recovery from two microalgae by aqueous and alcohol processing. J Am Oil Chem Soc 89:335–345

    Article  CAS  Google Scholar 

  • Wang Y, Pan Y, Zhang Z, Sun R, Fang X, Yu D (2012) Combination use of ultrasound irradiation and ionic liquid in enzymatic isomerization of glucose to fructose. Process Biochem 47:976–982

    Article  CAS  Google Scholar 

  • Wang Y, Wang Q, Song X, Cai J (2018) Improving the stability and reusability of dextranase by immobilization on polyethylenimine modified magnetic particles. New J Chem 42:8391–8399

    Article  CAS  Google Scholar 

  • Westermann T, Melin T (2009) Flow-through catalytic membrane reactors—principles and applications. Chem Eng Process 48:17–28

    Article  CAS  Google Scholar 

  • Wood J (2013) Monolith reactors for intensified processing in green chemistry. Process intensification for green chemistry: eng sol for sustainable chem proc, pp 175–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimala Shivaprasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shivaprasad, P. (2022). Role of Process Intensification in Enzymatic Transformation of Biomass into High-Value Chemicals. In: Arora, S., Kumar, A., Ogita, S., Yau, Y.Y. (eds) Biotechnological Innovations for Environmental Bioremediation. Springer, Singapore. https://doi.org/10.1007/978-981-16-9001-3_18

Download citation

Publish with us

Policies and ethics