Skip to main content

Primary Central Nervous System Tumors

  • Chapter
  • First Online:
Oncology in the Precision Medicine Era

Abstract

The advent of molecular diagnostics has substantially impacted the field of neuro-oncology. Molecular characterization influences the diagnosing, prognostication, and therapeutic management of primary central nervous system (CNS) tumors. An overview is provided of the major categories of primary CNS tumors and the key tumor subtypes which comprise these categories. With regard to diagnosis, the radiographic and pathologic features are highlighted, with an emphasis on the molecular pathologic features and their incorporation into diagnosis as well as the insight they provide for prognosis. The utilization of these features as potential therapeutic targets is also highlighted, acknowledging that these remain predominantly investigational treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Act Neuropathol. 2016;131(6):803–20.

    Article  Google Scholar 

  2. Louis DN, Wesserling P, Paulus W, et al. cIMPACT-NOW update 1: Not Otherwise Specified (NOS) and Not Elsewhere Classified (NEC). Acta Neuropathol. 2018;135(3):481–4.

    Article  PubMed  Google Scholar 

  3. Louis DN, Giannini C, Capper D, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27 mutant, and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018;135(4):639–42.

    Article  PubMed  Google Scholar 

  4. Brat D, Aldape K, Colman H, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wild type, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018;136(5):805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lukas RV, Mrugala MM. Pivotal therapeutic trials for infiltrating gliomas and how they affect clinical practice. Neuro Oncol Pract. 2017;4(4):209–19.

    Article  Google Scholar 

  6. Lukas RV, Wainwright DA, Ladomersky E, et al. Newly diagnosed glioblastoma: a review on clinical management. Oncology. 2019;33(3):623491.

    PubMed  Google Scholar 

  7. D’Amico RS, Englander ZK, Canoll P, Bruce JN. Extent of resection in glioma-a review of the cutting edge. World Neurosurg. 2017;103:538–49.

    Article  PubMed  Google Scholar 

  8. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastoma. J Neurosurg. 2011;115(1):3–8.

    Article  PubMed  Google Scholar 

  9. Jakola AS, Myrmel KS, Kloster R, Torp SH, Lindal S, Unsgard G, Solheim O. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA. 2012;308(18):1881–8.

    Article  CAS  PubMed  Google Scholar 

  10. Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro-Oncology. 2014;16(1):113–22.

    Article  PubMed  Google Scholar 

  11. Brown TJ, Brennan MC, Li M, et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol. 2016;2(11):1460–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Duffau H. Mapping the connectome in awake surgery for gliomas: an update. J Neurosurg Sci. 2017;61(6):612–30.

    PubMed  Google Scholar 

  13. Kuhnt D, Becker A, Ganslandt O, et al. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high field intraoperative MRI guidance. Neuro-Oncology. 2011;13:1339–48.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stummer W, Pichelmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  15. Kirkpatrick JP, Laack NN, Shih HA, Gondi V. Management of GBM: a problem of local recurrence. J Neuro-Oncol. 2017;134(3):487–93.

    Article  Google Scholar 

  16. Buckner JC, Shaw EG, Pugh SL, et al. Radiotherapy plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med. 2016;374(14):1344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fisher BJ, Hu C, Macdonald DR, et al. Phase 2 study of temozolomide-based chemoradiotherapy therapy for high-risk low-grade gliomas: preliminary results of Radiotherapy Therapy Oncology Group 0424. Int J Radiat Oncol Biol Phys. 2015;91(3):497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bell EH, Zhang P, Fisher BJ, et al. Association of MGMT promoter methylation status with survival outcomes in patients with high-risk glioma treated with radiotherapy and temozolomide: an analysis from the NRG Oncology/RTOG 0424 trial. JAMA Oncol. 2018;4(10):1405–9.

    Article  PubMed  Google Scholar 

  19. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  20. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  21. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert MR, Wang M, Aldape KD, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol. 2013;31(32):4085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Warren KE, Gurrangan S, Geyer JR, et al. A phase II study of O6-benzylguanine and temozolomide in pediatric patients with recurrent or progressive high-grade gliomas and brainstem gliomas: a Pediatric Brain Tumor Consortium study. J Neurooncol. 2012;106(3):643–9.

    Article  CAS  PubMed  Google Scholar 

  24. Gilbert MR, Dignan JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.

    Article  CAS  PubMed  Google Scholar 

  26. Stupp R, Hegi ME, Gorlia T, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicenter, randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(10):1100–8.

    Article  CAS  PubMed  Google Scholar 

  27. Chinnaiyan P, Won M, Wen PY, et al. A randomized phase II study of everolimus in combination with chemoradiotherapy in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. Neuro-Oncology. 2018;20(5):666–73.

    Article  CAS  PubMed  Google Scholar 

  28. Herrlinger U, Tzaridis T, Mack F, et al. Phase III trial of CCNU/temozolomide (TMZ) combination therapy vs. standard TMZ therapy for newly diagnosed MGMT-methylated glioblastoma patients: the randomized, open-label CeTeG/NOA-09 trial. Lancet. 2019;393(10172):678–88.

    Article  CAS  PubMed  Google Scholar 

  29. Stupp R, Lukas RV, Hegi ME. Improving survival in molecularly selected glioblastoma. Lancet. 2019;393(10172):615–7.

    Article  PubMed  Google Scholar 

  30. Stupp R, Taillibert S, Kanner AA, et al. Maintenance therapy with tumor-treating fields plus temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535–43.

    Article  CAS  PubMed  Google Scholar 

  31. Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silginer M, Weller M, Stupp R, Roth P. Biological activity of tumor-treating fields in preclinical glioma models. Cell Death Dis. 2017;8(4):e2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mrugala MM, Ruzevick J, Zlomanczuk P, Lukas RV. Tumor treating fields in neuro-oncological practice. Curr Oncol Rep. 2017;19(8):53.

    Article  PubMed  Google Scholar 

  34. Rick J, Chandra A, Aghi MK. Tumor treating fields: a new approach to glioblastoma therapy. J Neuro-Oncol. 2018;137(3):447–53.

    Article  Google Scholar 

  35. Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R. Epidermal growth factor receptor-mediated signal transduction in the development and therapy of gliomas. Clin Cancer Res. 2006;12(24):7261–70.

    Article  CAS  PubMed  Google Scholar 

  36. Young WK, Vredenburgh JJ, Cloughesy TF, et al. Safety and efficacy of erlotinib in first-relapse glioblastoma: a phase II open label study. Neuro-Oncology. 2010;12(10):1061–70.

    Article  CAS  Google Scholar 

  37. Raizer JJ, Abrey LE, Lassman AB, et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and non-progressive glioblastoma multiforme post radiotherapy therapy. Neuro-Oncology. 2010;12(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  38. Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide in patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACTIV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.

    Article  CAS  PubMed  Google Scholar 

  39. Van den Bent M, Gan HK, Lassman AB, et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol. 2017;80(6):1209–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gan HK, Reardon DA, Lassman AB, et al. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma. Neuro-Oncology. 2018;20(6):838–47.

    Article  CAS  PubMed  Google Scholar 

  41. DiStefano AL, Fucci A, Frattini V, et al. Detection, characterization, and inhibition of FGFR-TACC fusions in IDH-wild type gliomas. Clin Cancer Res. 2015;21(14):3307–17.

    Article  CAS  Google Scholar 

  42. Frattini V, Pagnotta SM. Tala, et al. a metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature. 2018;553(7687):222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaley T, Touat M, Subbiah V, et al. BRAF inhibition in BRAFV600-mutant gliomas: results from the VE-BASKET study. J Clin Oncol. 2018. Oct. [EPub ahead of print];36:3477. https://doi.org/10.1200/JCO.2018.78.9990.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Qi S, Yu L, Li H, et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncol Lett. 2014;7(6):1895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van den Bent MJ, Baumert B, Erridge SC, et al. Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomized, open-label intergroup study. Lancet. 2017;390(10103):1645–53.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir. 2016;158(1):51–8.

    Article  PubMed  Google Scholar 

  48. Smith JS, Chang EF, Lamborn KR, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26:1338–45.

    Article  PubMed  Google Scholar 

  49. Still MEH, Roux A, Huberfeld G, et al. Extent of resection and residual tumor thresholds for postoperative total seizure freedom in epileptic adult patients harboring a supratentorial diffuse low-grade glioma. Neurosurgery. 2019;85(2):E332–E340.

    Article  Google Scholar 

  50. Xu DS, Awad AW, Mehalechko C, et al. An extent of resection threshold for seizure freedom in patients with low-grade gliomas. J Neuro-Oncol. 2018;128(4):1084–90.

    Google Scholar 

  51. Englot DJ, Han SJ, Berger MS, Barbaro NM, Chang EF. Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery. 2012;70(4):921–8.

    Article  PubMed  Google Scholar 

  52. Baumert BG, Hegi ME, van den Bent MJ, et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomized, open-label, phase 3 intergroup study. Lancet Oncol. 2016;17(11):1521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kamran SC, Dworkin M, Niemierko A, et al. Patterns of failure among low grade glioma patients treated with proton radiation therapy. Pract Radiat Oncol. 2019;9(4):e356–61.

    Google Scholar 

  54. Zlatescu MC, TehraniYazdi A, Sasaki H, et al. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res. 2001;61(18):6713–5.

    CAS  PubMed  Google Scholar 

  55. Zhang S, Chiang GC, Magge RS, et al. MRI based texture analysis to classify low grade gliomas into astrocytoma and 1p/19qcodeleted oligodendroglioma. Magn Reson Imaging. 2019;57:254–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ding X, Wang Z, Chen D, et al. The prognostic value of maximal surgical resection is attenuated in oligodendroglioma subgroups of adult diffuse glioma: a multicenter retrospective study. J Neuro-Oncol. 2018;140(3):591–603.

    Article  Google Scholar 

  57. Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31(3):337–43.

    Article  CAS  PubMed  Google Scholar 

  58. Van den Bent MJ, Brandes AA, Taphoorn MJ, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol. 2013;31(3):344–50.

    Article  PubMed  CAS  Google Scholar 

  59. Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med. 2016;374(14):1344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Panageas KS, Iwamoto FM, Cloughesy TF, et al. Initial treatment patterns over time for anaplastic oligodendroglial tumors. Neuro-Oncology. 2012;14(6):761–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grosshans DR, Mohan R, Gondi V, Shih HA, Mahajan A, Brown PD. The role of image-guided intensity modulated proton therapy in glioma. Neuro-Oncology. 2017;19(Suppl_2):ii30–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Avila EK, Chamberlain M, Schiff D, et al. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro-Oncology. 2017;19(1):12–21.

    Article  PubMed  Google Scholar 

  63. DiNardo CD, Stein CM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98.

    Article  CAS  PubMed  Google Scholar 

  64. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cohen KJ, Jabado N, Grill J. Diffuse intrinsic pontine gliomas-current management and new biologic insights. Is there a glimmer of hope? Neuro-Oncology. 2017;19(8):1025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kallapagoudar S, Yadav RK, Lowe BR, Partridge JF. Histone H3 mutations-a special role for H3.3 in tumorigenesis? Chromosoma. 2015;124(2):177–89.

    Article  CAS  Google Scholar 

  67. Weinberg DN, Allis CD, Lu C. Oncogenic mechanisms of histone H3 mutations. Cold Spring Harb Perspect Med. 2017;7(1):a026443.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Caragher SP, Shireman JM, Huang M, et al. Activation of dopamine receptor 2 (DRD2) prompts transcriptomic and metabolic plasticity of glioblastoma. J Neurosci. 2019;39(11):1982–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hall M, Odia Y, Allen J, et al. DIPG-42. Can we change the landscape of pediatric diffuse intrinsic pontine glioma (DIPG)? First demonstration of clinical and radiographic response in a pediatric H3-K27M mutated DIPG to the DRD2-antagonist ONC201. Neuro-Oncology. 2018;20(suppl_2):i57.

    Article  PubMed Central  Google Scholar 

  70. Jones DT, Kocialkowski S, Liu L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hawkins C, Walker E, Mohamed N, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res. 2011;17(14):4790–8.

    Article  CAS  PubMed  Google Scholar 

  72. Hasselblatt M, Riesmeier B, Lechtape B, et al. BRAF-KIAA1549 fusion transcripts are less frequent in pilocytic astrocytomas diagnosed in adults. Neuropathol Appl Neurobiol. 2011;37(7):803–6.

    Article  CAS  PubMed  Google Scholar 

  73. Korshunov A, Meyer J, Capper D, et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 2009;118(3):401–5.

    Article  CAS  PubMed  Google Scholar 

  74. Cin H, Meyer C, Herr R, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011;121(6):763–74.

    Article  CAS  PubMed  Google Scholar 

  75. Maraka S, Janku F. BRAF mutations in primary brain tumors. Discov Med. 2018;26(141):51–60.

    PubMed  Google Scholar 

  76. Bond KM, Hughes JD, Porter AL, Orina J, Fang S, Parney IF. Adult pilocytic astrocytoma: an institutional series and systematic literature review for extent of resection and recurrence. World Neurosurg. 2018;110:276–83.

    Article  PubMed  Google Scholar 

  77. Sievert AJ, Lang SS, Boucher KL, et al. Paradoxical activation and RAF inhibitor of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proct Natl Acad Sci USA. 2013;110(15):5957–62.

    Article  CAS  Google Scholar 

  78. Hasbani DM, Crino PB. Tuberous sclerosis complex. Handb Clin Neurol. 2018;148:813–22.

    Article  PubMed  Google Scholar 

  79. Franz DN, Belousova E, Sparagana S, et al. Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol. 2014;15(13):1513–20.

    Article  CAS  PubMed  Google Scholar 

  80. Franz DN, Agricola K, Mays M, et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol. 2015;78(6):929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Franz DN, Belousova E, Sparagana S, et al. Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 study. PLoS One. 2016;11(6):e0158476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dias-Santagata D, Lam Q, Vernovsky K, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One. 2011;6(3):e17948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shaikh N, Brahmbhatt N, Kruser TJ, et al. Pleomorphic xanthoastrocytoma: a brief review. CNS Oncology. 2019;CNS39. https://doi.org/10.2217/cns-2019-0009. [EPub ahead of print].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chamberlain MC. Salvage therapy with BRAF inhibitors for recurrent pleomorphic xanthoastrocytoma: a retrospective case series. J Neuro-Oncol. 2013;114(2):237–40.

    Article  CAS  Google Scholar 

  85. Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with V600 BRAF mutations. N Engl J Med. 2015;373(8):726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee EQ, Ruland S, LeBoeuf NR, Wen PY, Santagata S. Successful treatment of a progressive V600E BRAF-mutated anaplastic pleomorphic xanthoastrocytoma with vemurafenib monotherapy. J Clin Oncol. 2016;34(10):e87–9.

    Article  CAS  PubMed  Google Scholar 

  87. Usubalieva A, Pierson CR, Kavran CA, et al. Primary meningeal pleomorphic xanthoastrocytoma with anaplastic features: a report of 2 cases, one with BRAF (V600E) mutation and clinical response to the BRAF inhibitor dabrafenib. J Neuropathol Exp Neurol. 2015;74(10):960–9.

    Article  PubMed  Google Scholar 

  88. Brown NF, Carter T, Mullholand P. Dabrafenib in BRAF V600-mutated anaplastic pleomorphic xanthoastrocytoma. CNS Oncol. 2017;6(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  89. Lukas RV, Merrell RT. BRAF inhibition with concomitant tumor treating fields for a multiply progressive pleomorphic xanthoastrocytoma. CNS Oncol. 2018;7(2):CNS10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hussain F, Horbinski CM, Chmura SJ, Yamini B, Lukas RV. Response to BRAF/MEK inhibition after progression with BRAF inhibition in a patient with anaplastic pleomorphic xanthoastrocytoma. Neurologist. 2018;23(5):163–6.

    Article  PubMed  Google Scholar 

  91. Amayiri N, Swaidan M, Al-Hussaini M, et al. Sustained response to targeted therapy in a patient with disseminated anaplastic pleomorphic xanthoastrocytoma. J Pediatr Hematol Oncol. 2018;40(6):478–82.

    Article  PubMed  Google Scholar 

  92. Wu J, Armstrong TS, Gilbert MR. Biology and management of ependymomas. Neuro-Oncology. 2016;18(7):902–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andreiuolo F, Varlet P, Tauziede-Espariat A, et al. Childhood supratentorial ependymomas with YAP1-MALMD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathol. 2019;29(2):205–16.

    Article  CAS  PubMed  Google Scholar 

  94. Northcott PA, Dubuc AM, Pfister S, Taylor MD. Molecular subgroups of medulloblastoma. Expert Rev Neurother. 2012;12(7):871–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Robinson GW, Orr BA, Wu G, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II Pediatric Brain Tumor Consortium studies PBTC-025B and PBTC-032. J Clin Oncol. 2015;33(24):2646–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gajjar A, Stewart CF, Ellison DW, et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin Cancer Res. 2013;19(22):6305–12.

    Article  CAS  PubMed  Google Scholar 

  97. Buerki RA, Horbinski CM, Kruser T, et al. An overview of meningiomas. Future Oncol. 2018;14(21):2161–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shaikh N, Dixit K, Raizer JJ. Recent advances in managing/understanding meningioma. F1000Res. 2018;7:490.

    Article  CAS  Google Scholar 

  99. Boetto J, Bielle F, Sanson M, Peyre M, Kalamarides M. SMO mutation status defines a distinct and frequent molecular subgroup in olfactory groove meningiomas. Neuro-Oncology. 2017;19(3):345–51.

    PubMed  PubMed Central  Google Scholar 

  100. Yesiloz U, Kirches E, Hartman C, et al. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro-Oncology. 2017;19(8):1088–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Brastianos PK, Horowitz PM, Santagata S, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clark VE, Erson-Omay EZ, Serin A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Clark VE, Harmancı AS, Bai H, et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016;48(10):1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Agnihotri S, Suppiah S, Tonge PD, et al. Therapeutic radiotherapy for childhood cancer drives structural aberrations of NF2 in meningiomas. Nat Commun. 2017;8(1):186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Sahm F, Schrimpf D, Stichel D, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017;18(5):682–94.

    Article  CAS  PubMed  Google Scholar 

  106. Olar A, Wani KM, Wilson CD, et al. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol. 2017;133(3):431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957;20(1):22–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pollock BE, Stafford SL, Utter A, Giannini C, Schreiner SA. Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade 1 resection for patients with small- to medium-size meningiomas. Int J Radiat Oncol Biol Phys. 2003;55(4):1000–5.

    Article  PubMed  Google Scholar 

  109. Bloch O, Kaur G, Jian BJ, Parsa AT, Barani IJ. Stereotactic radiosurgery for benign meningiomas. J Neuro-Oncol. 2012;107(1):13–20.

    Article  Google Scholar 

  110. Jenkinson MD, Weber DC, Haylock BJ, Mallucci CL, Zakaria R, Javadpour M. Radiotherapy versus Observation following surgical resection of Atypical Meningioma (the ROAM trial). Neuro-Oncology. 2014;16(11):1560–1.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Aghi MK, Carter BS, Cosgrove GR, et al. Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiotherapy. Neurosurgery. 2009;64(1):56–60.. –discussion60.

    Article  PubMed  Google Scholar 

  112. Marwin C, Perry A. Pathological classification and molecular genetics of meningiomas. J Neuro-Oncol. 2010;99(3):379–91.

    Article  CAS  Google Scholar 

  113. Pierscianek D, Wolf S, Keyvani K, et al. Study of angiogenic signaling pathways in hemangioblastoma. Neuropathology. 2017;37(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  114. Hodgson TS, Nielsen SM, Lesniak MS, Lukas RV. Neurological management of Von Hippel-Lindau disease. Neurologist. 2016;21(5):73–8.

    Article  PubMed  Google Scholar 

  115. Ashthigiri AR, Mehta GU, Zach L, et al. Prospective evaluation of radiosurgery for hemangioblastomas in von Hippel-Lindau disease. Neuro-Oncology. 2010;12:80–6.

    Article  Google Scholar 

  116. Hanakita S, Koga T, Shin M, et al. The long-term outcomes of radiosurgery for intracranial hemangioblastomas. Neuro-Oncology. 2014;16:429–33.

    Article  PubMed  Google Scholar 

  117. Capitano JF, Mazza E, Motta E, et al. Mechanisms, indications and results of salvage systemic therapy for sporadic and von Hippel-Lindau related hemangioblastomas of the central nervous system. Crit Rev Oncol Hematol. 2013;86:69–84.

    Article  Google Scholar 

  118. Riklin C, Seystahl K, Hofer S, et al. Antiangiogenic treatment for multiple CNS hemangioblastomas. Onkologie. 2012;35(7–8):443–5.

    Article  PubMed  Google Scholar 

  119. Lukas RV, Stupp R, Gondi V, Raizer JJ. Primary central nervous system lymphoma-PART 1: epidemiology, diagnosis, staging, and prognosis. Oncology (Williston Park). 2018;32(1):17–22.

    Google Scholar 

  120. Weller M, Martus P, Roth P, et al. Surgery for primary CNS lymphoma? Challenging a paradigm. Neuro-Oncology. 2012;14:1481–4.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Rae AI, Mehta A, Cloney M, et al. Craniotomy and survival for primary central nervous system lymphoma. Neurosurgery. 2019;84(4):935–44.

    Article  PubMed  Google Scholar 

  122. Shibamoto Y, Ogino H, Hasegawa M, et al. Results of radiotherapy monotherapy for primary central nervous system lymphoma in the 1990s. Int J Radiat Oncol Biol Phys. 2005;62:809–13.

    Article  PubMed  Google Scholar 

  123. Schlegel U, Korfel A. Is whole-brain radiotherapy still a standard treatment for primary central nervous system lymphomas? Curr Opin Neurol. 2018;31(6):733–9.

    Article  PubMed  Google Scholar 

  124. DeAngelis LM, Seiferheld W, Schold SC, et al. Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiotherapy Therapy Oncology Group Study 93-10. J Clin Oncol. 2002;20:4643–8.

    Article  PubMed  Google Scholar 

  125. Batchelor T, Carson K, O’Neill A, et al. Treatment of primary CNS lymphoma with methotrexate and deferred radiotherapy: a report of NABTT 96-07. J Clin Oncol. 2003;21:1044–9.

    Article  CAS  PubMed  Google Scholar 

  126. Gerstner ER, Carson KA, Grossman SA, Batchelor TT. Long-term outcome in PCNSL patients treated with high-dose methotrexate and deferred radiotherapy. Neurology. 2008;70:401–2.

    Article  PubMed  Google Scholar 

  127. Ferreri AJ, Reni M, Foppoli M, et al. High-dose cytarabine plus high-dose methotrexate versus high-dose methotrexate alone in patients with primary CNS lymphoma: a randomised phase II trial. Lancet. 2009;374:1512–20.

    Article  CAS  PubMed  Google Scholar 

  128. Rubenstein JL, Hsi ED, Johnson JL, et al. Intensive chemotherapy and immunotherapy in patients with newly diagnosed primary CNS lymphoma: CALGB 50202 (Alliance 50202). J Clin Oncol. 2013;31:3061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Korfel A, Thiel E, Martus P, et al. Randomized phase III study of whole-brain radiotherapy for primary CNS lymphoma. Neurology. 2015;84:1242–8.

    Article  CAS  PubMed  Google Scholar 

  130. Herrlinger U, Schäfer N, Fimmers R, et al. Early whole brain radiotherapy in primary CNS lymphoma: negative impact on quality of life in the randomized G-PCNSL-SGI trial. J Cancer Res Clin Oncol. 2017;143:1815–21.

    Article  PubMed  Google Scholar 

  131. Glass J, Won M, Schultz CJ, et al. Phase I and II study of induction chemotherapy with methotrexate, rituximab, and temozolomide, followed by whole-brain radiotherapy and post-radiotherapy temozolomide for primary CNS lymphoma: NRG Oncology RTOG 0227. J Clin Oncol. 2016;34:1620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Abrey LE, Moskowitz CH, Mason WP, et al. Intensive methotrexate and cytarabine followed by high-dose chemotherapy with autologous stem-cell rescue in patients with newly diagnosed primary CNS lymphoma: an intent to treat analysis. J Clin Oncol. 2003;21:4151–6.

    Article  CAS  PubMed  Google Scholar 

  133. Soussain C, Hoang-Xuan K, Taillandier L, et al. Intensive chemotherapy followed by hematopoietic stem cell rescue for refractory and recurrent primary CNS and intraocular lymphoma: Société Françcaise de Greffe de Moëelle Osseuse-Thérapie Cellulaire. J Clin Oncol. 2008;26:2512–8.

    Article  PubMed  Google Scholar 

  134. Lukas RV, Stupp R, Gondi V, Raizer JJ. Primary central nervous system lymphoma-PART 2: Modern therapeutic management and future directions. Oncology (Williston Park). 2018;32(2):e11–9.

    Google Scholar 

  135. Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17(1):57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Grommes C, Pastore A, Palaskas N, et al. Ibrutinib unmasks critical role of Bruton tyrosine kinase in primary CNS lymphoma. Cancer Discov. 2017;7:1018–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Grommes C, Younes A. Ibrutinib in PCNSL: the curious cases of clinical responses and aspergillosis. Cancer Cell. 2017;31:731–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lionakis MS, Dunleavy K, Roschewski M, et al. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell. 2017;31:833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dunleavy K, Lai CE, Roschewski M, et al. Phase I study of dose-adjusted-Teddi-R with ibrutinib in untreated and relapsed/refractory primary CNS lymphoma. Blood. 2015;126:abstr 472.

    Article  Google Scholar 

  140. Rubenstein JL, Geng H, Fraser EJ, et al. Phase 1 investigation of lenalidomide/rituximab plus outcomes of lenalidomide maintenance in relapsed CNS lymphoma. Blood Adv. 2018;2(13):1595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vu K, Mannis G, Hwang J, Geng H, Rubenstein JL. Low-dose lenalidomide maintenance after induction therapy in older patients with primary central nervous system lymphoma. Br J Haematol. 2019;186(1):180–183.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Minniti G, Clark E, Scaringi C, Enrici RM. Stereotactic radiotherapy and radiosurgery for non-functioning and secreting pituitary adenomas. Rep Pract Oncol Radiother. 2016;21(4):370–8.

    Article  PubMed  Google Scholar 

  143. Brastianos PK, Taylor-Weiner A, Manley PE, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46(2):161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cagnazzo F, Zoli M, Mazzatenta D, Gompel JJV. Endoscopic and microscopic transsphenoidal surgery of craniopharyngiomas: a systematic review of surgical outcomes over two decades. J Neurol Surg A Cent Eur Neurosurg. 2018;79(3):247–56.

    Article  PubMed  Google Scholar 

  145. Clark AJ, Cage TA, Aranda D, et al. A systematic review of the results of surgery and radiotherapy on tumor control for pediatric craniopharyngioma. Childs Nerv Syst. 2013;29(2):231–8.

    Article  PubMed  Google Scholar 

  146. Noel G, Gondi V. Proton therapy for tumors of the base of the skull. Chin Clin Oncol. 2016;5(4):51.

    Article  PubMed  Google Scholar 

Download references

Funding

 P50CA221747 SPORE for Translational Approaches to Brain Tumors and BrainUp grant 2136 (RVL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rimas V. Lukas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lukas, R.V., Gondi, V., Bloch, O., Mrugala, M.M. (2020). Primary Central Nervous System Tumors. In: Salgia, R. (eds) Oncology in the Precision Medicine Era. Springer, Cham. https://doi.org/10.1007/978-3-030-31471-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31471-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31470-5

  • Online ISBN: 978-3-030-31471-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics