Skip to main content
Log in

Management of GBM: a problem of local recurrence

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Forty years ago, adjuvant treatment of patients with GBM using fractionated radiotherapy following surgery was shown to substantially improve survival compared to surgery alone. However, even with the addition of temozolomide to radiotherapy, overall survival is quite limited and local failure remains a fundamental problem, despite multiple attempts to increase dose to the tumor target. This review presents the historical background and clinical rationale leading to the current standard of care consisting of 60 Gy total dose in 2 Gy fractions to the MRI-defined targets in younger, high performance status patients and more hypofractionated regimens in elderly and/or debilitated patients. Particle therapies offer the potential to increase local control while reducing dose and, potentially, long-term neurocognitive toxicity. However, improvements in systemic therapies for GBM will need to be implemented before the full benefits of improved local control can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walker MD, Alexander E Jr, Hunt WE, MacCarty CS, Mahaley MS Jr, Mealey J Jr, Norrell HA, Owens G, Ransohoff J, Wilson CB, Gehan EA, Strike TA (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49(3):333–343. doi:10.3171/jns.1978.49.3.0333

    Article  CAS  PubMed  Google Scholar 

  2. Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, Hunt WE, MacCarty CS, Mahaley MS Jr, Mealey J Jr, Owens G, Ransohoff J 2nd, Robertson JT, Shapiro WR, Smith KR Jr, Wilson CB, Strike TA (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303(23):1323–1329. doi:10.1056/NEJM198012043032303

    Article  CAS  PubMed  Google Scholar 

  3. Laperriere N, Zuraw L, Cairncross G (2002) Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64(3):259–273

    Article  PubMed  Google Scholar 

  4. Walker MD, Strike TA, Sheline GE (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5(10):1725–1731

    Article  CAS  PubMed  Google Scholar 

  5. Bleehen NM, Stenning SP (1991) A Medical Research council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. The Medical Research Council Brain Tumour Working Party. Br J Cancer 64(4):769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, Weinstein A, Nelson JS, Tsukada Y (1983) Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer 52(6):997–1007

    Article  CAS  PubMed  Google Scholar 

  7. Nelson DF, Curran WJ Jr, Scott C, Nelson JS, Weinstein AS, Ahmad K, Constine LS, Murray K, Powlis WD, Mohiuddin M et al (1993) Hyperfractionated radiation therapy and bis-chlorethyl nitrosourea in the treatment of malignant glioma–possible advantage observed at 72.0 Gy in 1.2 Gy B.I.D. fractions: report of the Radiation Therapy Oncology Group Protocol 8302. Int J Radiat Oncol Biol Phys 25(2):193–207

    Article  CAS  PubMed  Google Scholar 

  8. Laperriere NJ, Leung PM, McKenzie S, Milosevic M, Wong S, Glen J, Pintilie M, Bernstein M (1998) Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys 41(5):1005–1011

    Article  CAS  PubMed  Google Scholar 

  9. Selker RG, Shapiro WR, Burger P, Blackwood MS, Arena VC, Gilder JC, Malkin MG, Mealey JJ Jr, Neal JH, Olson J, Robertson JT, Barnett GH, Bloomfield S, Albright R, Hochberg FH, Hiesiger E, Green S (2002) The Brain Tumor Cooperative Group NIH Trial 87–01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 51(2):343–355 discussion 355–347

    Article  PubMed  Google Scholar 

  10. Souhami L, Seiferheld W, Brachman D, Podgorsak EB, Werner-Wasik M, Lustig R, Schultz CJ, Sause W, Okunieff P, Buckner J, Zamorano L, Mehta MP, Curran WJ Jr (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93–05 protocol. Int J Radiat Oncol Biol Phys 60(3):853–860. doi:10.1016/j.ijrobp.2004.04.011

    Article  PubMed  Google Scholar 

  11. Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30(9):907–911

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro WR, Young DF (1976) Treatment of malignant glioma. A controlled study of chemotherapy and irradiation. Arch Neurol 33(7):494–500

    Article  CAS  PubMed  Google Scholar 

  13. Cabrera AR, Kirkpatrick JP, Fiveash JB, Shih HA, Koay EJ, Lutz S, Petit J, Chao ST, Brown PD, Vogelbaum M, Reardon DA, Chakravarti A, Wen PY, Chang E (2016) Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. Pract Radiat Oncol 6(4):217–225. doi:10.1016/j.prro.2016.03.007

    Article  PubMed  Google Scholar 

  14. Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, Ricardi U, Short SC, Weber DC, Belka C (2016) ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 118(1):35–42. doi:10.1016/j.radonc.2015.12.003

    Article  PubMed  Google Scholar 

  15. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16(6):1405–1409

    Article  CAS  PubMed  Google Scholar 

  16. Milano MT, Okunieff P, Donatello RS, Mohile NA, Sul J, Walter KA, Korones DN (2010) Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int J Radiat Oncol Biol Phys 78(4):1147–1155

    Article  CAS  PubMed  Google Scholar 

  17. Halperin EC, Bentel G, Heinz ER, Burger PC (1989) Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int J Radiat Oncol Biol Phys 17(6):1347–1350

    Article  CAS  PubMed  Google Scholar 

  18. Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB (1987) Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 62(6):450–459

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Guerrero-Cazares H, Ye X, Ford E, McNutt T, Kleinberg L, Lim M, Chaichana K, Quinones-Hinojosa A, Redmond K (2013) Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection. Int J Radiat Oncol Biol Phys 86(4):616–622. doi:10.1016/j.ijrobp.2013.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee P, Eppinga W, Lagerwaard F, Cloughesy T, Slotman B, Nghiemphu PL, Wang PC, Kupelian P, Agazaryan N, Demarco J, Selch MT, Steinberg M, Kang JJ (2013) Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. Int J Radiat Oncol Biol Phys 86(4):609–615. doi:10.1016/j.ijrobp.2013.01.009

    Article  PubMed  Google Scholar 

  21. Gibbs IC, Haas-Kogan D, Terezakis S, Kavanagh BD (2013) The subventricular zone neural progenitor cell hypothesis in glioblastoma: epiphany, Trojan Horse, or Cheshire fact? Int J Radiat Oncol Biol Phys 86(4):606–608. doi:10.1016/j.ijrobp.2013.03.002

    Article  PubMed  Google Scholar 

  22. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. doi:10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  23. Ashby LS, Smith KA, Stea B (2016) Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol 14(1):225. doi:10.1186/s12957-016-0975-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Minniti G, Lanzetta G, Scaringi C, Caporello P, Salvati M, Arcella A, De Sanctis V, Giangaspero F, Enrici RM (2012) Phase II study of short-course radiotherapy plus concomitant and adjuvant temozolomide in elderly patients with glioblastoma. Int J Radiat Oncol Biol Phys 83(1):93–99. doi:10.1016/j.ijrobp.2011.06.1992

    Article  CAS  PubMed  Google Scholar 

  25. Cao JQ, Fisher BJ, Bauman GS, Megyesi JF, Watling CJ, Macdonald DR (2012) Hypofractionated radiotherapy with or without concurrent temozolomide in elderly patients with glioblastoma multiforme: a review of ten-year single institutional experience. J Neurooncol 107(2):395–405. doi:10.1007/s11060-011-0766-3

    Article  CAS  PubMed  Google Scholar 

  26. Keime-Guibert F, Chinot O, Taillandier L, Cartalat-Carel S, Frenay M, Kantor G, Guillamo JS, Jadaud E, Colin P, Bondiau PY, Menei P, Loiseau H, Bernier V, Honnorat J, Barrie M, Mokhtari K, Mazeron JJ, Bissery A, Delattre JY (2007) Radiotherapy for glioblastoma in the elderly. N Engl J Med 356(15):1527–1535. doi:10.1056/NEJMoa065901

    Article  CAS  PubMed  Google Scholar 

  27. Malmstrom A, Gronberg BH, Marosi C, Stupp R, Frappaz D, Schultz H, Abacioglu U, Tavelin B, Lhermitte B, Hegi ME, Rosell J, Henriksson R (2012) Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. doi:10.1016/S1470-2045(12)70265-6

    PubMed  Google Scholar 

  28. Minniti G, Scaringi C, Lanzetta G, Terrenato I, Esposito V, Arcella A, Pace A, Giangaspero F, Bozzao A, Enrici RM (2015) Standard (60 Gy) or short-course (40 Gy) irradiation plus concomitant and adjuvant temozolomide for elderly patients with glioblastoma: a propensity-matched analysis. Int J Radiat Oncol Biol Phys 91(1):109–115. doi:10.1016/j.ijrobp.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  29. Roa W, Brasher PM, Bauman G, Anthes M, Bruera E, Chan A, Fisher B, Fulton D, Gulavita S, Hao C, Husain S, Murtha A, Petruk K, Stewart D, Tai P, Urtasun R, Cairncross JG, Forsyth P (2004) Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 22(9):1583–1588. doi:10.1200/JCO.2004.06.082

    Article  CAS  PubMed  Google Scholar 

  30. Roa W, Kepka L, Kumar N, Sinaika V, Matiello J, Lomidze D, Hentati D, Guedes de Castro D, Dyttus-Cebulok K, Drodge S, Ghosh S, Jeremic B, Rosenblatt E, Fidarova E (2015) International Atomic Energy Agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 33(35):4145–4150. doi:10.1200/JCO.2015.62.6606

    Article  PubMed  Google Scholar 

  31. Minniti G, Scaringi C, De Sanctis V, Lanzetta G, Falco T, Di Stefano D, Esposito V, Enrici RM (2013) Hypofractionated stereotactic radiotherapy and continuous low-dose temozolomide in patients with recurrent or progressive malignant gliomas. J Neurooncol 111(2):187–194. doi:10.1007/s11060-012-0999-9

    Article  CAS  PubMed  Google Scholar 

  32. Tsien CI, Brown D, Normolle D, Schipper M, Piert M, Junck L, Heth J, Gomez-Hassan D, Ten Haken RK, Chenevert T, Cao Y, Lawrence T (2012) Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma. Clin Cancer Res 18(1):273–279. doi:10.1158/1078-0432.CCR-11-2073

    Article  CAS  PubMed  Google Scholar 

  33. Watkins JM, Marshall DT, Patel S, Giglio P, Herrin AE, Garrett-Mayer E, Jenrette JM 3rd (2009) High-dose radiotherapy to 78 Gy with or without temozolomide for high grade gliomas. J Neurooncol 93(3):343–348. doi:10.1007/s11060-008-9779-y

    Article  CAS  PubMed  Google Scholar 

  34. Gotz I, Grosu AL (2013) [(18)F]FET-PET Imaging for treatment and response monitoring of radiation therapy in malignant glioma patients—a review. Front. Oncol 3:104. doi:10.3389/fonc.2013.00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsuo M, Miwa K, Tanaka O, Shinoda J, Nishibori H, Tsuge Y, Yano H, Iwama T, Hayashi S, Hoshi H, Yamada J, Kanematsu M, Aoyama H (2012) Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys 82(1):83–89. doi:10.1016/j.ijrobp.2010.09.020

    Article  PubMed  Google Scholar 

  36. Levin WP, Kooy H, Loeffler JS, DeLaney TF (2005) Proton beam therapy. Br J Cancer 93(8):849–854. doi:10.1038/sj.bjc.6602754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shih HA, Sherman JC, Nachtigall LB, Colvin MK, Fullerton BC, Daartz J, Winrich BK, Batchelor TT, Thornton LT, Mancuso SM, Saums MK, Oh KS, Curry WT, Loeffler JS, Yeap BY (2015) Proton therapy for low-grade gliomas: Results from a prospective trial. Cancer 121(10):1712–1719. doi:10.1002/cncr.29237

    Article  PubMed  Google Scholar 

  38. Kageji T, Mizobuchi Y, Nagahiro S, Nakagawa Y, Kumada H (2014) Correlation between radiation dose and histopathological findings in patients with gliblastoma treated with boron neutron capture therapy (BNCT). Appl Radiat Isot 88:20–22. doi:10.1016/j.apradiso.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  39. Henriksson R, Capala J, Michanek A, Lindahl SA, Salford LG, Franzen L, Blomquist E, Westlin JE, Bergenheim AT, Swedish Brain Tumour Study G (2008) Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother Oncol 88(2):183–191. doi:10.1016/j.radonc.2006.04.015

    Article  CAS  PubMed  Google Scholar 

  40. Kawabata S, Miyatake S, Kuroiwa T, Yokoyama K, Doi A, Iida K, Miyata S, Nonoguchi N, Michiue H, Takahashi M, Inomata T, Imahori Y, Kirihata M, Sakurai Y, Maruhashi A, Kumada H, Ono K (2009) Boron neutron capture therapy for newly diagnosed glioblastoma. J Radiat Res 50(1):51–60

    Article  PubMed  Google Scholar 

  41. Busse PM, Harling OK, Palmer MR, Kiger WS 3rd, Kaplan J, Kaplan I, Chuang CF, Goorley JT, Riley KJ, Newton TH, Santa Cruz GA, Lu XQ, Zamenhof RG (2003) A critical examination of the results from the Harvard-MIT NCT program phase I clinical trial of neutron capture therapy for intracranial disease. J Neurooncol 62(1–2):111–121

    PubMed  Google Scholar 

  42. Fitzek MM, Thornton AF, Rabinov JD, Lev MH, Pardo FS, Munzenrider JE, Okunieff P, Bussiere M, Braun I, Hochberg FH, Hedley-Whyte ET, Liebsch NJ, Harsh GRt (1999) Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J Neurosurg 91(2):251–260. doi:10.3171/jns.1999.91.2.0251

    Article  CAS  PubMed  Google Scholar 

  43. Mizumoto M, Tsuboi K, Igaki H, Yamamoto T, Takano S, Oshiro Y, Hayashi Y, Hashii H, Kanemoto A, Nakayama H, Sugahara S, Sakurai H, Matsumura A, Tokuuye K (2010) Phase I/II trial of hyperfractionated concomitant boost proton radiotherapy for supratentorial glioblastoma multiforme. Int J Radiat Oncol Biol Phys 77(1):98–105. doi:10.1016/j.ijrobp.2009.04.054

    Article  PubMed  Google Scholar 

  44. Mizumoto M, Yamamoto T, Takano S, Ishikawa E, Matsumura A, Ishikawa H, Okumura T, Sakurai H, Miyatake S, Tsuboi K (2015) Long-term survival after treatment of glioblastoma multiforme with hyperfractionated concomitant boost proton beam therapy. Pract Radiat Oncol 5(1):e9–e16. doi:10.1016/j.prro.2014.03.012

    Article  PubMed  Google Scholar 

  45. Mizoe JE, Tsujii H, Hasegawa A, Yanagi T, Takagi R, Kamada T, Tsuji H, Takakura K, Organizing Committee of the Central Nervous System Tumor Working G (2007) Phase I/II clinical trial of carbon ion radiotherapy for malignant gliomas: combined X-ray radiotherapy, chemotherapy, and carbon ion radiotherapy. Int J Radiat Oncol Biol Phys 69(2):390–396. doi:10.1016/j.ijrobp.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  46. Marks LB, Prosnitz LR (1999) Assessing the impact of elective regional radiotherapy on survival. Cancer J. Sci Am 5(2):92–100

    CAS  PubMed  Google Scholar 

  47. Corso CD, Bindra RS (2016) Success and failures of combined modalities in glioblastoma multiforme: old problems and new directions. Semin Radiat Oncol 26(4):281–298. doi:10.1016/j.semradonc.2016.06.003

    Article  PubMed  Google Scholar 

  48. Platten M, Bunse L, Wick W, Bunse T (2016) Concepts in glioma immunotherapy. Cancer Immunol Immunother. doi:10.1007/s00262-016-1874-x

    PubMed  Google Scholar 

  49. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL, Barnett GH, Zhu JJ, Henson JW, Engelhard HH, Chen TC, Tran DD, Sroubek J, Tran ND, Hottinger AF, Landolfi J, Desai R, Caroli M, Kew Y, Honnorat J, Idbaih A, Kirson ED, Weinberg U, Palti Y, Hegi ME, Ram Z (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314(23):2535–2543. doi:10.1001/jama.2015.16669

    Article  CAS  PubMed  Google Scholar 

  50. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, Huang L, Ratliff M, Karimian Jazi K, Kurz FT, Schmenger T, Lemke D, Gommel M, Pauli M, Liao Y, Haring P, Pusch S, Herl V, Steinhauser C, Krunic D, Jarahian M, Miletic H, Berghoff AS, Griesbeck O, Kalamakis G, Garaschuk O, Preusser M, Weiss S, Liu H, Heiland S, Platten M, Huber PE, Kuner T, von Deimling A, Wick W, Winkler F (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580):93–98. doi:10.1038/nature16071

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Kirkpatrick.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkpatrick, J.P., Laack, N.N., Shih, H.A. et al. Management of GBM: a problem of local recurrence. J Neurooncol 134, 487–493 (2017). https://doi.org/10.1007/s11060-016-2347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2347-y

Keywords

Navigation