Skip to main content

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 39))

Abstract

Targeted intracellular delivery is gaining importance, especially for improved therapy of cancer and intracellular infections. Endocytosis or cellular internalization, a physiological process for intracellular delivery of nutrients or destruction of pathogens, involves two major pathways, namely phagocytosis or cell eating, which enable uptake of solid particles and pinocytosis or cell drinking. Pinocytosis includes fluid-phase endocytosis (macropinocytosis/micropinocytosis) and receptor-mediated endocytosis (RME). While phagocytosis, macropinocytosis, and micropinocytosis are nonselective, RME is a selective process of internalization, which is triggered by association of the receptor with specific ligands. Among endocytic processes, phagocytosis and RME are relied on for nanocarrier-based targeted drug delivery. This chapter describes various pathways with emphasis on phagocytosis and strategies to bypass lysosomal destruction of drugs. A major focus, however, is RME with a detailed discussion on clathrin, caveolin, and clathrin- and caveolin-independent pathways, and also provides a list of receptors based on the internalization pathway. Targeted delivery of drugs to subcellular organelles is also discussed. The discussion on the impact of nanocarrier properties on cellular internalization of nanocarriers throws light on factors to be addressed during nanoparticle design. This chapter thereby enables a comprehensive understanding of intracellular uptake in the context of targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP2:

Activating protein 2

BSA:

Bovine serum albumin

CALM:

Clathrin assembly lymphoid myeloid leukemia protein

CAM:

Cell adhesion molecule

CavME:

Caveolae-mediated endocytosis

Cdc42:

Cell division control protein 42 homolog

CDR:

Circular dorsal ruffle

CLIC:

Clathrin-independent tubulovesicular carriers

CME:

Clathrin-mediated endocytosis

CPP:

Cell-penetrating peptide

CTX:

Cholera toxin

Dia2:

Dynamin 2

DOX:

Doxorubicin

DRF:

Diaphanous-related formins

EEA1:

Early endosome antigen 1

EGF:

Endothelial growth factor

EPR:

Enhanced permeation and retention

EPS15:

Epidermal growth factor receptor pathway substrate 15

ESCRT:

Endosomal sorting complex required for transport

FA-M-β-CD:

Folate-appended methyl-β cyclodextrin

FCH:

Fer/cdc42 interacting protein 4 (CIP4) homology

FcR:

Fc receptors

GAP:

GTPase activating protein

GDI:

Guanine nucleotide dissociation inhibitor

GEEC-GPI:

AP-enriched early endosomal compartments

GEF:

Guanine nucleotide exchange factor

GRAF1:

GTPase regulator associated with focal adhesion kinase 1

HGF:

Hepatocyte growth factor

HIV:

Human immunodeficiency virus

HUVEC:

Human umbilical vascular endothelial cells

Ig:

Immunoglobulin

IHME:

The Institute of Health Metrics and Evaluation

ITAM:

Immunoreceptor tyrosine-based activation

LAMP:

Lysosomal-associated membrane proteins

LDL:

Low-density lipoprotein

MMP:

Matrix metalloproteinase

NCF:

1-Neutrophil cytosol factor 1/p47-phox

NCF-2:

Neutrophil cytosol factor 2/p67-phox

NCF-4:

Neutrophil cytosol factor 4/p40-phox

NO:

Nitric oxide radicals

NOS2:

Nitric oxide synthase 2

NRAMP-1:

Natural resistance-associated macrophage protein 1

PDGF:

Platelet derived growth factor

PEG:

Polyethylene glycol

PIP2:

Phosphatidyinositol-3,4-bisphosphonate

PIP3:

Phosphatidylinositol-3,4,5-phosphate

PLGA:

Poly(lactic-co-glycolic)acid

Rac1:

Ras-related C3 toxin protein

RBC:

Red blood cell

RES:

Reticuloendothelial system

RILP:

Rab interacting lysosomal protein

RME:

Receptor-mediated endocytosis

ROS:

Reactive oxygen species

RTK:

Rho tyrosine kinase

SMTP:

Spontaneous membrane translocating peptide

SV40:

Simian virus 40

Syk:

Spleen-associated tyrosine kinase

TGF:

Tumor growth factor

TPP:

Triphosphonium ion

V-ATPase:

Vacuolar type H+-ATPase

Vpu:

Viral protein U

VSP:

Vegetative storage protein

WASP:

Wiskott-Aldrich syndrome protein

WHO:

World Health Organization

References

  1. R MRHR. Cancer. 2018. [cited 2018 May 27]. Available from: https://ourworldindata.org/cancer.

  2. Fact sheets: Infectious diseases. [cited 2018 May 27]. Available from: http://www.who.int/topics/infectious_diseases/factsheets/en/.

  3. Karnofsky DA. Mechanism of action of anticancer drugs at a cellular level. CA Cancer J Clin. 2009;18(4):232–4.

    Article  Google Scholar 

  4. Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng. 2006;8:343–75.

    Article  CAS  PubMed  Google Scholar 

  5. Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102.

    Article  CAS  PubMed  Google Scholar 

  6. Iversen T, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles : Present knowledge and need for future studies. Nano Today. 2011;6(2):176–85.

    Article  CAS  Google Scholar 

  7. Goldstein J, Anderson R, Brown M. Receptor-mediated endocytosis and the cellular uptake of low density lipoprotein. In: Membrane recycling. Ciba: Pitman Books Ltd; 1982. p. 77–95.

    Google Scholar 

  8. Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med. 2017;21(9):1668–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yameen B, Il CW, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bloomfield G, Kay RR. Uses and abuses of macropinocytosis. J Cell Sci. 2016;129:2697–705.

    Article  CAS  PubMed  Google Scholar 

  12. Jones AT. Macropinocytosis: Searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med. 2007;11(4):670–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang JL, Jiang G, Song QX, Gu X, Hu M, Wang XL, et al. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis. Nat Commun. 2017;8(May):1–18.

    Google Scholar 

  14. Orth JD, Mcniven MA, Orth JD, Mcniven MA. Get off my back ! Rapid receptor internalization through circular dorsal ruffles. Cancer Res. 2006;66:11094–6.

    Article  CAS  PubMed  Google Scholar 

  15. Hoon J, Wong W, Koh C. Functions and regulation of circular dorsal ruffles. Mol Cell Biol. 2012;32(21):4246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peleg B, Disanza A, Scita G, Gov N. Propagating cell-membrane waves driven by curved activators of actin propagating cell-membrane waves driven by curved activators of actin polymerization. PLoS One. 2011;6(4):1–11.

    Article  CAS  Google Scholar 

  17. Ekholm R, Ericson LE. The structural basis of thyroid function. In: Thyroid diseases: basic science, pathology, clinical and laboratory diagnoses. Boston: Butterworths; 1994. p. 17–51.

    Google Scholar 

  18. Rabinovitch M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 1995;5:85–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kaminskas LM, Boyd BJ. Nanosized drug delivery vectors and the reticuloendothelial system. In: Intracellular delivery: fundamentals and applications, fundamental biomedical technologies. Dordrechts: Springer;2011.

    Chapter  Google Scholar 

  20. Winkelstein JA. Opsonins: their function, identity, and clinical significance. J Pediatr. 1973;82(5):747–53.

    Article  CAS  PubMed  Google Scholar 

  21. David U, Goodridge H. Information processing during phagocytosis. Nat Rev Immunol. 2017;12(7):492–502.

    Google Scholar 

  22. Charles A Janeway, Jr, Paul Travers, Mark Walport and MJ Schlomchik. The complement system and innate immunity. In: Immunobiology: the immune system in health and disease 5th ed. New York: Garland Science; 2001.

    Google Scholar 

  23. Celik I, Stover C, Botto M, Thiel S, Tzima S, Walport M, et al. Role of the classical pathway of complement activation in experimentally induced polymicrobial peritonitis. Infect Immun. 2001;69(12):7304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moalli F, Jaillon S, Inforzato A, Sironi M, Bottazzi B, Mantovani A, et al. Pathogen recognition by the long pentraxin PTX3. J Biomed Biotechnol. 2011;2011:1–15.

    Article  CAS  Google Scholar 

  25. Lu J, Teh C, Kishore U, Reid KBM. Collectins and ficolins: sugar pattern recognition molecules of the mammalian innate immune system. Biochim Biophys Acta Gen Subj. 2002;1572:387–400.

    Article  CAS  Google Scholar 

  26. Frank MM, Fries LF. Complement interactions and functions. Immunol Today. 1991;12(9):322–6.

    Article  CAS  PubMed  Google Scholar 

  27. Park H, Chan MM, Iritani BM. Hem-1: putting the ‘“ WAVE ”’ into actin polymerization during an immune response. FEBS Lett. 2010;584:4923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gordon S. Phagocytosis: an immunobiological process. Immun Rev. 2016;44(3):463–75.

    CAS  Google Scholar 

  29. Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol. 2010;25(1):99–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guerra F, Bucci C. Multiple Roles of the Small GTPase Rab7. Cells. 2016;5(34):1–28.

    Google Scholar 

  31. Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol. 2003;23(7):2501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosales C, Querol EU. Control of phagocytosis by microbial pathogens. Front Immunol. 2017;8:1–23.

    Article  CAS  Google Scholar 

  33. Flannagan RS, Cosío G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol. 2009;7(May):355–66.

    Article  CAS  PubMed  Google Scholar 

  34. Rosales C, Uribe-querol E. Phagocytosis: a fundamental process in immunity.BioMed Research International. 2017;2017:1–18.

    Article  CAS  Google Scholar 

  35. Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol. 2012;80(3):580–3.

    Article  CAS  Google Scholar 

  36. Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264:182–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lehrer RI, Bevins CL. Defensins and other proteins. In: Mucosale barrier: development and physiology of mucosal defense; 2003. p. 95–110.

    Google Scholar 

  38. Ponzoni M, Pastorino F. Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int J Mol Sci. 2018;19:1–17.

    Article  CAS  Google Scholar 

  39. Visser JG, Du A, Van Staden P, Smith C. Harnessing macrophages for controlled-release drug delivery: lessons from microbes. Front Pharmacol. 2019;10:1–18.

    Article  CAS  Google Scholar 

  40. Visser JG, Smith C. Development of transendothelial shuttle by macrophage modification. J Tissue Eng Regen Med. 2018;12(4):e1889–98.

    Article  CAS  PubMed  Google Scholar 

  41. Melcarne C, Lemaitre B, Kurant E. Phagocytosis in drosophila: from molecules and cellular machinery to physiology. Insect Biochem Mol Biol. 2019;109:1–12.

    Article  CAS  PubMed  Google Scholar 

  42. Mayorga LS, Piit A, Stahl PD. Receptor-mediated endocytosis and phagocytosis share common determinants for intracellular trafficking. In: Mononuclear phagocytes. Switzerland: Springer nature; 1992. p. 214–23.

    Chapter  Google Scholar 

  43. Antony AC. Folate receptors. Annu Rev Nutr. 1996;16:501–21.

    Article  CAS  PubMed  Google Scholar 

  44. Abbaspour N, Hurrell R, Kelishadi R. Review of iron and its importance on human health. J Res Med Sci. 2014;19:164–74.

    PubMed  PubMed Central  Google Scholar 

  45. Nigel E. Kupffer cells and their function. Liver. 1987;7(4):63–75.

    Google Scholar 

  46. Gordon SB, Read RC. Macrophage defences against respiratory tract infections. Br Med Bull. 2002;61:45–61.

    Article  CAS  PubMed  Google Scholar 

  47. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–46.

    Article  CAS  PubMed  Google Scholar 

  48. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.

    Article  CAS  PubMed  Google Scholar 

  49. Brown V, Greene M. Molecular and cellular mechanisms of receptor-mediated endocytosis. DNA Cell Biol. 1991;10(6):399–409.

    Article  CAS  PubMed  Google Scholar 

  50. Canton I, Battaglia G. Molecular mechanism and physiological functions of clathrin – mediated endocytosis. Nat Publ Gr. 2011;12(8):517–33.

    Google Scholar 

  51. Battaglia ICG. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41:2718–39.

    Article  PubMed  CAS  Google Scholar 

  52. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018:1–14.

    Google Scholar 

  53. Hinners I, Tooze SA. Changing directions: clathrin-mediated transport between the Golgi and endosomes. J Cell Sci. 2003;4:763–71.

    Article  CAS  Google Scholar 

  54. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davidson APJM. Nanovehicular intracellular delivery systems. J Pharm Sci. 2008;97(9):3518–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Klumperman J, Raposo G. The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol. 2014;6:4–20.

    Article  CAS  Google Scholar 

  57. Wang Z, Tiruppathi C, Minshall RD, Malik AB. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano. 2009;3(12):4110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol. 2003;161(4):673–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;(3):256–75.

    Article  CAS  PubMed  Google Scholar 

  60. Otto GP, Nichols BJ. The roles of flotillin microdomains – endocytosis and beyond. J Cell Sci. 2011;124:3833–940.

    Article  CAS  Google Scholar 

  61. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  62. Meister M, Tikkanen R. Endocytic trafficking of membrane-bound cargo: a flotillin point of view. Membranes (Basel). 2014;4(3):356–71.

    Article  CAS  Google Scholar 

  63. Vercauteren D, Piest M, Van Der Aa LJ, Al Soraj M, Jones AT, Engbersen JFJ, et al. Flotillin-dependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disul fi de-based poly (amido amine)/DNA polyplexes. Biomaterials. 2011;32(11):3072–84.

    Article  CAS  PubMed  Google Scholar 

  64. Chi X, Wang S, Huang Y, Stamnes M, Chen J. Roles of Rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci. 2013;14(4):7089–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16(10):522–9.

    Article  CAS  PubMed  Google Scholar 

  66. Mellado M, Jose MR-F, Martinez-Alonzo C, Manes S, del Real G. Prevention of HIV-1 infection by inhibition of Rho-mediated reorganization and/or content alteration of cell membrane raft. 2007;1:1–9.

    Google Scholar 

  67. Gerbal-chaloin S, Gondeau C, Aldrian-herrada G. First step of the cell-penetrating peptide mechanism involves Rac1 GTPase-dependent actin-network remodelling. Biol Cell. 2007;99:223–38.

    Article  CAS  PubMed  Google Scholar 

  68. Howes MT, Kirkham M, Riches J, Cortese K, Walser PJ, Simpson F, et al. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Biol Cell. 2010;190(4):675–91.

    Article  CAS  Google Scholar 

  69. Waneck L, Brown D. Glycosyl-phosphatidylinositol-anchored membrane proteins. J Am Soc Nephrol. 1992;3:895–906.

    PubMed  Google Scholar 

  70. Onodera R, Motoyama K, Okamatsu A, Higashi T, Arima H. Potential use of folate-appended methyl- b -Cyclodextrin as an anticancer agent. Scientific Reports. 2013; 3:1–9.

    Google Scholar 

  71. Mayor S, Parton RG, Donaldson JG. Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol. 2014; 6(6):1–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Fu A, Tang R, Hardie J, Farkas ME, Rotello VM. Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem. 2014;25(9):1602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev. 2011;40(1):233–45.

    Article  CAS  PubMed  Google Scholar 

  74. Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev. 2014;66:26–41.

    Article  CAS  PubMed  Google Scholar 

  75. Han Q, Wang W, Jia X, Qian Y, Li Q, Wang Z, et al. Switchable liposomes: targeting-peptide-functionalized and pH-triggered cytoplasmic delivery. ACS Appl Mater Interfaces. 2016;8(29):18658–63.

    Article  CAS  PubMed  Google Scholar 

  76. Rao SK, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomterials. 2008;29(33):4429–38.

    Article  CAS  Google Scholar 

  77. Khalil IA, Kogure K, Futaki S, Harashima H. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem. 2006;281(6):3544–51.

    Article  CAS  PubMed  Google Scholar 

  78. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32(19):1–10.

    Article  Google Scholar 

  79. Abrami L, Lindsay M, Parton RG, Leppla SH, Van Der Goot FG. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol. 2004;166(5):645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Le Blanc I, Luyet P, Pons V, Ferguson C, Emans N, Petiot A, et al. Endosome-to-cytosol transport of viral nucleocapsids. Cell Biol. 2005;7(7):653–64.

    CAS  Google Scholar 

  81. Dermine J, Goyette G, Houde M, Turco SJ, Desjardins M. Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell Microbiol. 2005;7(9):1263–70.

    Article  CAS  PubMed  Google Scholar 

  82. Schnupf P, Zhou J, Varshavsky A, Portnoy DA. Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infect Immun. 2007;75(11):5135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ciocchini E, Arellano-reynoso B, Lapaque N, Salcedo S, Briones G, Gorvel J, et al. Cyclic b -1, 2-glucan is a brucella virulence factor required for intracellular survival. Nat Immunol. 2005;6(6):618–25.

    Article  PubMed  CAS  Google Scholar 

  84. Gruenberg J. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol. 2006;7:495–504.

    Article  CAS  PubMed  Google Scholar 

  85. Deretic V, Singh S, Master S, Harris J, Roberts E, Kyei G, et al. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol. 2006;8:719–27.

    Article  CAS  PubMed  Google Scholar 

  86. Epand RM. Fusion peptides and the mechanism of viral fusion. Biochimica. 2003;1614:116–21.

    CAS  Google Scholar 

  87. Donald JE, Zhang Y, Fiorin G, Carnevale V, Slochower DR, Gai F. Transmembrane orientation and possible role of the fusogenic peptide from parainfluenza virus 5 (PIV5) in promoting fusion. PNAS. 2011;108(10):3958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Munyendo WLL, Lv H, Benza-ingoula H, Baraza LD, Zhou J. Cell penetrating peptides in the delivery of biopharmaceuticals. Biomolecules. 2012;2:187–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nakase I, Kogure K, Harashima H. Application of a fusiogenic peptide GALA for intracellular delivery. Methods Mol Biol. 2011;683:525–33.

    Article  CAS  PubMed  Google Scholar 

  90. Wang T, Yang S, Petrenko VA, Torchilin VP. Cytoplasmic delivery of liposomes into MCF-7 breast cancer cells mediated by cell-specific Phage fusion coat protein. Mol Pharm. 2010;7(4):1149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oliveira S, van Rooy I, Kranenburg O, Storm G, Schiffelers RM. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm. 2007;331(2):211–4.

    Article  CAS  PubMed  Google Scholar 

  92. Ju E, Park K, Su K, Kim J, Yang J, Kong J, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 2010;141(1):2–12.

    Article  CAS  Google Scholar 

  93. Hafez I, Maurer N, Cullis P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001;8:1188–96.

    Article  CAS  PubMed  Google Scholar 

  94. Basha G, Novobrantseva TI, Rosin N, Tam YYC, Hafez IM, Wong MK, et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. 2011;19(12):2186–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin J, Bae KH, Yang H, Lee SJ, Kim H, Kim Y, et al. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem. 2011;22:2568–72.

    Article  CAS  PubMed  Google Scholar 

  96. Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151(3):220–8.

    Article  CAS  PubMed  Google Scholar 

  97. He J, Kauffman WB, Fuselier T, Naveen SK, Voss TG, Hristova K, et al. Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides. J Biol Chem. 2013;288(41):29974–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Villegas E. Pore-forming peptides from spiders. Toxin Rev. 2005;24:347–59.

    Article  CAS  Google Scholar 

  99. Lai P, Pai C, Peng C, Shieh M, Berg K, Lou P. Enhanced cytotoxicity of saporin by polyamidoamine dendrimer conjugation and photochemical internalization. J Biomed Mater Res. 2007; Part A: 87(1)147–55.

    Article  CAS  Google Scholar 

  100. Alonso MA, Millán J. The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J Cell Sci. 2001;114(Pt 22):3957–65.

    CAS  PubMed  Google Scholar 

  101. Partlow KC, Lanza GM, Wickline SA. Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials. 2008;29(23):3367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jaspreet K, Vasir VL. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 2008;59(8):718–28.

    Google Scholar 

  103. Chu Z, Miu K, Lung P, Zhang S, Zhao S, Chang HC, et al. Rapid endosomal escape of prickly nanodiamonds: Implications for gene delivery. Sci Rep. 2015;5:1–8.

    CAS  Google Scholar 

  104. Tan Y, Zhu Y, Zhao Y, Wen L, Meng T, Liu X, et al. Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials. 2017; Available from: https://doi.org/10.1016/j.biomaterials.2017.07.036.

    Article  CAS  PubMed  Google Scholar 

  105. Xu Y, Wang S, Chan HF, Liu Y, Li H, He C, et al. Triphenylphosphonium-modified Poly ( ethylene glycol ) -poly ( ε -caprolactone ) Micelles for Mitochondria- targeted Gambogic Acid Delivery. Int J Pharm. 2017; Available from: https://doi.org/10.1016/j.ijpharm.2017.01.064

    Article  CAS  PubMed  Google Scholar 

  106. Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9(13):11780–9.

    Article  CAS  PubMed  Google Scholar 

  107. Zhou J, Zhao W, Ma X, Ju R, Li X, Li N, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 2013;34:3626–38.

    Article  CAS  PubMed  Google Scholar 

  108. Wang T, Hou J, Su C, Zhao L, Shi Y. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J Nanobiotechnol. 2017;15(1):1–12.

    Article  CAS  Google Scholar 

  109. Qu Q, Ma X, Zhao Y. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale. 2013; 7(40):1–9.

    Article  CAS  PubMed  Google Scholar 

  110. Yamada Y, Munechika R, Kawamura E, Sakurai Y, Sato Y, Harashima H. Mitochondrial delivery of doxorubicin using MITO-porter kills drug-resistant renal cancer cells via mitochondrial toxicity. J Pharm Sci. 2017;106(9):2428–37.

    Article  CAS  PubMed  Google Scholar 

  111. López V, Villegas MR, Rodríguez V, Villaverde G, Lozano D, Baeza A, et al. Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria. ACS Appl Mater Interfaces. 2017;9(32):26697–706.

    Article  PubMed  CAS  Google Scholar 

  112. Bukrinsky M. A hard way to the nucleus. Mol Med. 2004;10(1):1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rajendran L, Knölker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 2010;9(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  114. Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. Development and evaluation of peptide-functionalized gold nanoparticles for hiv integrase inhibition. Int J Pept Res Ther. 2018;0(0):1–12.

    Google Scholar 

  115. Pan L, He Q, Liu J, Chen Y, Zhang L, Shi J. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134:5722–5.

    Article  CAS  PubMed  Google Scholar 

  116. Zhou Z, Liu Y, Wu L, Li L, Huang Y. Enhanced nuclear delivery of anti-cancer drugs using micelles containing releasable membrane fusion peptide and nuclear-targeting retinoic acid. J Mater Chem B. 2017;5(34):7175–85.

    Article  CAS  PubMed  Google Scholar 

  117. Jing Y, Xiong X, Ming Y, Zhao J, Guo X, Yang G. A multifunctional micellar nanoplatform with pH-triggered cell penetration and nuclear targeting for effective cancer therapy and inhibition to lung metastasis. Adv Healthc Mater. 2018;1700974:1–13.

    Google Scholar 

  118. Cerrato CP, Künnapuu K, Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv. 2017;14(2):245–55.

    Article  CAS  PubMed  Google Scholar 

  119. Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Biochem. 2005;74:317–28.

    Article  CAS  Google Scholar 

  120. Zakariah M, Khan S, Choudhary AA, Rolfo C, Ben Ismail MM, Alotaibi YA. To decipher the mycoplasma hominis proteins targeting into the endoplasmic reticulum and their next-generation sequencing data. Molecules. 2018; 23(5):1–12.

    Article  PubMed Central  CAS  Google Scholar 

  121. Boelens J, Lust S, Offner F, Bracke ME, Vanhoecke BW. Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo. 2007;21(2):215–26.

    CAS  PubMed  Google Scholar 

  122. Inoue T, Tsai B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol. 2013;5(1):1–17.

    Article  CAS  Google Scholar 

  123. Pan T, Song W, Gao H, Li T, Cao X, Zhong S, et al. miR-29b-loaded gold nanoparticles targeting to the endoplasmic reticulum for synergistic promotion of osteogenic differentiation. Appl Mater Interfaces. 2016;8(30):19217–27.

    Article  CAS  Google Scholar 

  124. Sneh-Edri H, Likhtenshtein D, Stepensky D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm. 2011;8(4):1266–75.

    Article  CAS  PubMed  Google Scholar 

  125. Zhang J, Sun A, Xu R, Tao X, Dong Y, Lv X, et al. Cell-penetrating and endoplasmic reticulum-locating TAT-IL-24-KDEL fusion protein induces tumor apoptosis. J Cell Physiol. 2016;231(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  126. Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HHW, Wu CL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 2008;99(7):1479–84.

    Article  CAS  PubMed  Google Scholar 

  127. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Mahmoud Y, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc. 2018;46(14):4218–44.

    Article  Google Scholar 

  128. Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, et al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci. 2009;107(2):553–69.

    Article  CAS  PubMed  Google Scholar 

  129. Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Sen Gupta A. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle across nano-to-micro scale. Nanoscale. 2018; 10(32):15350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;169:159–69.

    Article  Google Scholar 

  131. Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6(5):4483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rausch K, Reuter A, Fischer K, Schmidt M. Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules. 2010;11(11):2836–9.

    Article  CAS  PubMed  Google Scholar 

  133. Albanese A, Chan WC. Effect of gold nanoparticle aggregation on cell uptake and toxicity BT. ACS Nano. 2011;5(7):5478–89.

    Article  CAS  PubMed  Google Scholar 

  134. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;2013:1–18.

    Article  CAS  Google Scholar 

  135. Storm G, Belliot S, Daemenb T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17(95):31–48.

    Article  CAS  Google Scholar 

  136. Owens DE, Peppas NA. Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.

    Article  CAS  PubMed  Google Scholar 

  137. Mcsweeney MD, Versfeld ZC, Carpenter DM, Lai SK. Physician awareness of immune responses to polyethylene glycol-drug conjugates. Clin Transl Sci. 2018;11:162–5.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems Zohreh. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;4(2):219–33.

    Article  CAS  Google Scholar 

  139. Podlekareva K, Akmal F. Palmar-plantar erythrodysesthesia associated with chemotherapy and its treatment. Case Rep Oncol. 2011;4:229–35.

    Article  Google Scholar 

  140. Von Erlach T, Zwicker S, Pidhatika B, Konradi R, Textor M, Hall H, et al. Formation and characterization of DNA-polymer-condensates based on poly (2-methyl-2-oxazoline) grafted poly (L -lysine) for non-viral delivery of therapeutic DNA. Biomaterials. 2011;32(22):5291–303.

    Article  CAS  Google Scholar 

  141. Metselaar JM, Bruin P, De Boer LWT, De Vringer T, Snel C, Oussoren C, et al. A novel family of L -amino acid-based biodegradable polymer – lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug Chem. 2003;14:1156–64.

    Article  CAS  PubMed  Google Scholar 

  142. Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, et al. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials. 2009;30(20):3466–75.

    Article  CAS  PubMed  Google Scholar 

  143. Sun J, Zeng F, Jian H, Wu S. Conjugation with betaine: a facile and effective approach to significant improvement of gene delivery properties of PEI. Biomacromolecules. 2013;14:728–36.

    Article  CAS  PubMed  Google Scholar 

  144. Siegers C, Biesalski M, Haag R. Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem Eur J. 2004;10:2831–8.

    Article  CAS  PubMed  Google Scholar 

  145. Alhareth K, Vauthier C, Bourasset F, Gueutin C, Ponchel G, Moussa F. Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur J Pharm Biopharm. 2012;81(2):453–7.

    Article  CAS  PubMed  Google Scholar 

  146. Vonarbourg A, Passirini C, Saulnier P, Simard P, Leroux JC, Benoit JP. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater. 2006; 78(3):620–8.

    Article  CAS  Google Scholar 

  147. Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release. 2005;103:235–43.

    Article  CAS  PubMed  Google Scholar 

  148. Guhagarkar SA, Majee SB, Samad A, Devarajan PV. Evaluation of pullulan-functionalized doxorubicin nanoparticles for asialoglycoprotein receptor-mediated uptake in Hep G2 cell line. Cancer Nanotechnol. 2011;2:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guhagarkar SA, Gaikwad RV, Samad A, Malshe VC, Devarajan PV. Polyethylene sebacate – doxorubicin nanoparticles for hepatic targeting. Int J Pharm. 2010;401(1–2):113–22.

    Article  CAS  PubMed  Google Scholar 

  150. Guhagarkar SA, Shah D, Patel MD, Sathaye SS, Devarajan PV. Polyethylene sebacate-silymarin nanoparticles with enhanced hepatoprotective activity. J Nanosci Nanotechnol. 2015;15:4090–3.

    Article  CAS  PubMed  Google Scholar 

  151. Souza AAD, Devarajan PV. Bioenhanced oral curcumin nanoparticles: role of carbohydrates. Carbohydr Polym. 2016;136:1251–8.

    Article  PubMed  CAS  Google Scholar 

  152. Pranatharthiharan S, Patel MD, Malshe VC, Padma V, Pranatharthiharan S, Patel MD, et al. Polyethylene sebacate doxorubicin nanoparticles: role of carbohydrate anchoring on in vitro and in vivo anticancer efficacy. Drug Deliv. 2016;7544:1–10.

    Google Scholar 

  153. Pranatharthiharan S, Patel MD, Malshe VC, Gorakshakar A, Madkaikar M, Ghosh K, et al. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv. 2017;7544:20–9.

    Article  CAS  Google Scholar 

  154. Doh K-O, Yeo Y. Application of polysaccharides for surface modification of nanomedicines. Ther Deliv. 2013;3(12):1447–56.

    Article  CAS  Google Scholar 

  155. Milosevits G, Krol S. Exosomes: potential model for complement- stealth delivery systems structure of exosomes. Eur J Nanomed. 2015;7(3):207–18.

    Article  CAS  Google Scholar 

  156. Fan W, Yan W, Xu Z, Ni H. Erythrocytes load of low molecular weight chitosan nanoparticles as a potential vascular drug delivery system. Colloids Surf B Biointerfaces. 2012;95:258–65.

    Article  CAS  PubMed  Google Scholar 

  157. Li Y, Kroger M, Liu Kam W. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials. 2014;35:8467–78.

    Article  CAS  PubMed  Google Scholar 

  158. Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm. 2017;532(1):450–65.

    Article  CAS  PubMed  Google Scholar 

  159. Dasgupta S, Auth T, Gompper G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014;14:687–93.

    Article  CAS  PubMed  Google Scholar 

  160. Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Nat Acad Sci. 2013;110(43):1–6.

    Article  CAS  Google Scholar 

  161. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8.

    Article  CAS  PubMed  Google Scholar 

  162. Nowacek AS, Balkundi S, Mcmillan J, Roy U, Martinez-skinner A, Mosley RL, et al. Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release. 2011;150(2):204–11.

    Article  CAS  PubMed  Google Scholar 

  163. Li Y, Chen X, Gu N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B. 2008;112(51):16647–53.

    Article  CAS  PubMed  Google Scholar 

  164. Moyano DF, Goldsmith M, Solfiell DJ, Landesman-milo D, Miranda OR, Peer D, et al. Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc. 2012;134(9):3965–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Malcolm DW, Freeberg MAT, Wang Y, Sims KR Jr, Awad HA, DSW B. Diblock copolymer hydrophobicity facilitates efficient gene silencing and cytocompatible nanoparticle- mediated siRNA delivery to musculoskeletal cell types. Biomacromolecules. 2017;18(11):3753–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Voigt J, Christensen J, Shastri VP. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. PNAS. 2014;111(8):2942–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Verma A, Stellacci F. Effect of surface properties on nanoparticle – cell interactions. Small. 2010;1:12–21.

    Article  CAS  Google Scholar 

  168. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  PubMed  Google Scholar 

  169. Ricarda M, Holzapfel V, Musyanovych A, Nothelfer K, Walther P, Frank H, et al. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials. 2006;27:2820–8.

    Article  CAS  Google Scholar 

  170. Clemens DL, Lee B, Xue M, Thomas CR, Meng H, Ferris D, et al. Targeted intracellular delivery of antituberculosis drugs to mycobacterium tuberculosis -infected macrophages via functionalized. 2012;2535–45.

    Google Scholar 

  171. Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009;135(3):259–67.

    Article  CAS  PubMed  Google Scholar 

  172. Chung T, Wu S, Yao M, Lu C, Lin Y, Hung Y, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials. 2007;28:2959–66.

    Article  CAS  PubMed  Google Scholar 

  173. Deng L, Que F, Wei H, Xu G, Dong X, Zhang H. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion. PLoS One. 2015;10(5):1–12.

    Google Scholar 

  174. Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lourenc I, Mainardes RM, Palmira M, Gremia D. Zidovudine-loaded PLA and PLA – PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells. J Pharm Sci. 2009;98(1):257–67.

    Article  CAS  Google Scholar 

  176. Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32(13):3435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Beningo KA, Wang Y. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci. 2002;115:849–56.

    CAS  PubMed  Google Scholar 

  178. Guo P, Liu D, Subramanyam K, Wang B, Auguste DT, Moses MA. Nanoparticle elasticity directs tumor uptake. Nat Commun. 2018; 9:1–9.

    Google Scholar 

  179. Li S-D, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2010;1788(10):2259–66.

    Article  CAS  Google Scholar 

  180. Na K, Lee TB, Park K, Shin E, Lee Y, Choi H. S elf-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci. 2003;18:165–73.

    Article  CAS  PubMed  Google Scholar 

  181. Yuan H, Fales AM, Vo-dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc. 2012;134:11358–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Edagwa BJ, Guo D, Puligujja P, Chen H, Mcmillan J, Liu X, et al. Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes. FASEB J. 2014;28:1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil B. Jindal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Surve, D.H., Dandekar, P., Devarajan, P.V., Jindal, A.B. (2019). Intracellular Delivery: An Overview. In: Devarajan, P., Dandekar, P., D'Souza, A. (eds) Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. AAPS Advances in the Pharmaceutical Sciences Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-29168-6_1

Download citation

Publish with us

Policies and ethics