Skip to main content
Log in

A Hard Way to the Nucleus

  • In Overview
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

As a member of the Retrovirus family, human immunodeficiency virus (HIV), a causative agent of AIDS, replicates by integrating its genome into the host cell’s nuclear DNA. However, in contrast to most retroviruses that depend on mitotic dissolution of the nuclear envelope to gain access to the host cell’s genome, the HIV pre-integration complex can enter the nucleus of the target cell during the interphase. Such capacity greatly enhances HIV replication and allows the virus to productively infect terminally differentiated nonproliferating cells, such as macrophages. Infection of macrophages is a critical factor in the pathogenesis of diseases caused by HIV-1 and other lentiviruses. The mechanisms responsible for this unusual feature of HIV have enticed researchers since the early 90s, when the first characterization of the HIV-1 pre-integration complex was reported. Several viral factors, including matrix protein, integrase, viral protein R, and central DNA flap, have been proposed as regulators of HIV-1 nuclear import, only to be later shown as nonessential for this process. As a result, after more than a decade of intense research, there is still no consensus on which HIV-1 and cellular proteins control this critical step in HIV-1 replication. In this review, we will discuss recent advances and suggest possible solutions to the controversial issue of HIV-1 nuclear import.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, and Stevenson M. (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365:666–9.

    Article  CAS  Google Scholar 

  2. Lewis PF, Emerman M. (1994) Passage through mitosis is required for oncoretro-viruses but not for the human immunodeficiency virus. J. Virol. 68:510–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Weinberg JB, Matthews TJ, Cullen BR, Malim MH. (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med. 174:1477–82.

    Article  CAS  Google Scholar 

  4. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M. (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl. Acad. Sci. U.S.A. 89:6580–4.

    Article  CAS  Google Scholar 

  5. Lewis P, Hensel M, Emerman M. (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 11:3053–8.

    Article  CAS  Google Scholar 

  6. Li G, Simm M, Potash MJ, Volsky DJ. (1993) Human immunodeficiency virus type 1 DNA synthesis, integration, and efficient viral replication in growth-arrested T cells. J. Virol. 67:3969–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallay P, Swingler S, Aiken C, Trono D. (1995) HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell 80:379–88.

    Article  CAS  Google Scholar 

  8. Roe T, Reynolds TC, Yu G, Brown PO. (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12:2099–108.

    Article  CAS  Google Scholar 

  9. Briggs JA, Wilk T, Welker R, Krausslich HG, Fuller SD. 2003. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J. 22:1707–15.

    Article  CAS  Google Scholar 

  10. Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M. (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Natl. Acad. Sci. U.S.A. 90:6125–9.

    Article  CAS  Google Scholar 

  11. Fassati A, Goff SP. (2001) Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J. Virol. 75:3626–35.

    Article  CAS  Google Scholar 

  12. Bowerman B, Brown PO, Bishop JM, Varmus HE. (1989) A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev. 3:469–78.

    Article  CAS  Google Scholar 

  13. Miller MD, Farnet CM, Bushman FD. 1997. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol. 71:5382–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bukrinskaya A, Brichacek B, Mann A, Stevenson M. (1998) Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J. Exp. Med. 188:2113–25.

    Article  CAS  Google Scholar 

  15. McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M, Hope TJ. (2002) Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159:441–52.

    Article  CAS  Google Scholar 

  16. Taunton J. (2001) Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr. Opin. Cell Biol. 13:85–91.

    Article  CAS  Google Scholar 

  17. Sodeik B, Ebersold MW, Helenius A. (1997) Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 136:1007–21.

    Article  CAS  Google Scholar 

  18. Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF. (1999) Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J. Cell Biol. 144:657–72.

    Article  CAS  Google Scholar 

  19. de Noronha CM, Sherman MP, Lin HW, Cavrois MV, Moir RD, Goldman RD, Greene WC. (2001) Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 294:1105–8.

    Article  Google Scholar 

  20. Gupta K, Ott D, Hope TJ, Siliciano RF, Boeke JD. (2000) A human nuclear shuttling protein that interacts with human immunodeficiency virus type 1 matrix is packaged into virions. J. Virol. 74:11811–24.

    Article  CAS  Google Scholar 

  21. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P. (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101: 173–85.

    Article  CAS  Google Scholar 

  22. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L, Dubart-Kupperschmitt A, Charneau P. (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96:4103–10.

    CAS  PubMed  Google Scholar 

  23. Van Maele B, De Rijck J, De Clercq E, Debyser Z. (2003) Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. J. Virol. 77:4685–94.

    Article  Google Scholar 

  24. Dvorin JD, Bell P, Maul GG, Yamashita M, Emerman M, Malim MH. (2002) Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J. Virol. 76:12087–96.

    Article  CAS  Google Scholar 

  25. Limon A, Nakajima N, Lu R, Ghory HZ, Engelman A. (2002) Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap. J. Virol. 76:12078–86.

    Article  CAS  Google Scholar 

  26. von Schwedler U, Kornbluth RS, Trono D. (1994) The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 91:6992–6.

    Article  Google Scholar 

  27. Nadler SG, Tritschler D, Haffar OK, Blake J, Bruce AG, Cleaveland JS. (1997) Differential expression and sequence-specific interaction of karyopherin alpha with nuclear localization sequences. J. Biol. Chem. 272:4310–5.

    Article  CAS  Google Scholar 

  28. Dingwall C, Laskey RA. 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–81.

    Article  CAS  Google Scholar 

  29. Haffar OK, Popov S, Dubrovsky L, Agostini I, Tang H, Pushkarsky T, Nadler SG, Bukrinsky M. (2000) Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J. Mol. Biol. 299:359–68.

    Article  CAS  Google Scholar 

  30. Mattaj IW, Englmeier L. (1998) Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67:265–306.

    Article  CAS  Google Scholar 

  31. Rexach M, Blobel G. (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83:683–92.

    Article  CAS  Google Scholar 

  32. Gallay P, Stitt V, Mundy C, Oettinger M, Trono D. (1996) Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J. Virol. 70:1027–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fouchier RA, Meyer BE, Simon JH, Fischer U, Malim MH. (1997) HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO J. 16:4531–9.

    Article  CAS  Google Scholar 

  34. Freed EO, Englund G, Martin MA. (1995) Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. J. Virol. 69:3949–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Reil H, Bukovsky AA, Gelderblom HR, Gottlinger HG. 1998. Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J. 17:2699–708.

    Article  CAS  Google Scholar 

  36. Gallay P, Hope T, Chin D, Trono D. (1997) HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. U.S.A. 94:9825–30.

    Article  CAS  Google Scholar 

  37. Bouyac-Bertoia M, Dvorin JD, Fouchier RA, Jenkins Y, Meyer BE, Wu LI, Emerman M, Malim MH. 2001. HIV-1 infection requires a functional integrase nls. Mol. Cell 7:1025–35.

    Article  CAS  Google Scholar 

  38. Limon A, Devroe E, Lu R, Ghory HZ, Silver PA, Engelman A. 2002. Nuclear localization of human immunodeficiency virus type 1 preintegration complexes (PICs): V165A and R166A are pleiotropic integrase mutants primarily defective for integration, not PIC nuclear import. J. Virol. 76:10598–607.

    Article  CAS  Google Scholar 

  39. Fassati A, Gorlich D, Harrison I, Zaytseva L, Mingot JM. (2003) Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. EMBO J. 22:3675–85.

    Article  CAS  Google Scholar 

  40. Jakel S, Gorlich D. 1998. Importin beta, transportin, RanBP5, and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 17:4491–502.

    Article  CAS  Google Scholar 

  41. Heinzinger NK et al. (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. U.S.A. 91:7311–5.

    Article  CAS  Google Scholar 

  42. Emerman M, Bukrinsky M, Stevenson M. (1994) HIV-1 infection of non-dividing cells. Nature 369:107–8.

    Article  Google Scholar 

  43. Dahl K, Martin K, Miller G. (1987) Differences among human immunodeficiency virus strains in their capacities to induce cytolysis or persistent infection of a lymphoblastoid cell line immortalized by Epstein-Barr virus. J. Virol. 61:1602–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stewart SA, Poon B, Jowett JB, Chen IS. (1997) Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J. Virol. 71:5579–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Connor RI, Chen BK, Choe S, Landau NR. (1995) Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 206:935–44.

    Article  CAS  Google Scholar 

  46. Nie Z, Bergeron D, Subbramanian RA, Yao XJ, Checroune F, Rougeau N, Cohen EA. (1998) The putative alpha helix 2 of human immunodeficiency virus type 1 Vpr contains a determinant which is responsible for the nuclear translocation of proviral DNA in growth-arrested cells. J. Virol. 72:4104–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jenkins Y, McEntee M, Weis K, Greene WC. (1998) Characterization of HIV-1 Vpr nuclear import: analysis of signals and pathways. J. Cell Biol. 143:875–85.

    Article  CAS  Google Scholar 

  48. Popov S, Rexach M, Ratner L, Blobel G, Bukrinsky M. (1998) Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J. Biol. Chem. 273:13347–52.

    Article  CAS  Google Scholar 

  49. Popov S, Rexach M, Zybarth G, Reiling N, Lee MA, Ratner L, Lane CM, Moore MS, Blobel G, Bukrinsky M. (1998) Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. EMBO J. 17:909–17.

    Article  CAS  Google Scholar 

  50. Vodicka MA, Koepp DM, Silver PA, Emerman M. (1998) HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev. 12:175–85.

    Article  CAS  Google Scholar 

  51. Fouchier RA et al. (1998) Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J. Virol. 72:6004–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Le Rouzic E et al. (2002) Docking of HIV-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. J. Biol. Chem. 277:45091–8.

    Article  Google Scholar 

  53. Weiss RA. (2003) HIV and AIDS: looking ahead. Nat. Med. 9:887–91.

    Article  CAS  Google Scholar 

  54. Turelli P et al. (2001) Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol. Cell 7:1245–54.

    Article  CAS  Google Scholar 

  55. Nermut MV, Fassati A. (2003) Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes. J. Virol. 77:8196–206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bukrinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukrinsky, M. A Hard Way to the Nucleus. Mol Med 10, 1–5 (2004). https://doi.org/10.1007/BF03401996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401996

Keywords

Navigation