Skip to main content

Receptor-mediated endocytosis and phagocytosis share common determinants for intracellular traficking

  • Chapter
Mononuclear Phagocytes

Abstract

Receptor-mediated endocytosis is a constitutive cellular process that accounts for the specific uptake of a wide variety of macromolecules from the extracellular environment (1,2). The process subserves manifold cellular functions including the supply of metals, vitamins, and metabolites necessary for cell growth and well being. Also, endocytosis regulates the composition of the extracellular environment by selectively internalizing molecules from the extracellular medium. All mammalian cells carry out some level of receptor-mediated endocytosis. Phagocytosis is a receptor-mediated process which, unlike endocytosis (notwithstanding peptide hormone induced receptor internalization), is triggered by receptor-ligand engagement (3). In vertebrates, phagocytosis is carried out by a limited number of cell types, mostly those involved in host defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz AL. Cell Biology of Intracellular Trafficking. Ann Rev Immunol 1990, 8:195–229.

    Article  CAS  Google Scholar 

  2. Wileman T, Harding C, Stahl P. Receptor-mediated endocytosis. Biochem J, 1985, 232:1–14.

    PubMed  CAS  Google Scholar 

  3. Silverstein SC, Greenberg S, Di Virgilio F, Steinberg TH. Phagocytosis. In: Fundamental Immunology. Paul WE, Ed. Raven Press 1989, pp. 703–719.

    Google Scholar 

  4. Brodsky FM. Living with clathrin: Its role in intracellular membrane traffic. Science 1988, 242:1396–1402.

    Article  PubMed  CAS  Google Scholar 

  5. Pearse BMF, Robinson MS. Clathrin, adaptors, and sorting. Ann Rev Cell Biol 1990, 6:151–171.

    Article  PubMed  CAS  Google Scholar 

  6. Stone DK, Crider BP, Sudhof TC, Xie X-S. Vacuolar proton pumps. J Bioenerg Biomem 1989, 21:605–620.

    Article  CAS  Google Scholar 

  7. Rothman JE, Orci L. Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. FASEB J 1990, 4:1460–1468.

    PubMed  CAS  Google Scholar 

  8. Balch WE. Biochemistry of interorganellar transport. J Biol Chem 1989, 264:16965–16968.

    PubMed  CAS  Google Scholar 

  9. Novick P, Schekman R. Secretion and cell surface growth are blocked in a temperature-sensitive mutant of Sacchar-omyces cerevisiae. Proc Natl Acad Sci USA 1979, 76:1858–1862.

    Article  PubMed  CAS  Google Scholar 

  10. Diaz R, Mayorga L, Stahl P. In vitro fusion of endosomes following receptor-mediated endocytosis. J Biol Chem 1988, 263:6093–6100.

    PubMed  CAS  Google Scholar 

  11. Keller RK, Touster O. Physical and chemical properties of ß-glucuronidase from the preputial glands of the female rat. J Biol Chem 1975, 250:4765–4769.

    PubMed  CAS  Google Scholar 

  12. Bradford MM. A rapid and sensitive method for the quantitation of micrograms quantities of protein by the principle of protein-dye binding. Anal Biochem 1976, 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  13. Mayorga LM, Bertini F, Stahl PD. Fusion of newly formed phagosomes with endosomes in intact cells and in a cell-free system. J Biol Chem 1991, 266:6511–6517.

    PubMed  CAS  Google Scholar 

  14. Diaz R, Mayorga LS, Weidman PJ, Rothman JE, Stahl PD. Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature 1989, 339:398–400.

    Article  PubMed  CAS  Google Scholar 

  15. Mayorga LS, Diaz R, Colombo MI, Stahl PD. GTP7S stimulation of endosome fusion suggests a role for a GTP-binding protein in the priming of vesicles before fusion. Cell Reg 1989, 1:113–124.

    CAS  Google Scholar 

  16. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M. Localization of low molecular weight GTP-binding proteins to exocytic and endocytic compartments. Cell 1990, 62:317–329.

    Article  PubMed  CAS  Google Scholar 

  17. Joiner KA, Fuhrman SA, Miettinen HM, Kasper I, Mell-man I. Toxoplasma gondii: fusion competence of parasi-tophorous vacuoles in Fc receptor-transfected fibroblasts. Science 1990, 249:641–649.

    Article  PubMed  CAS  Google Scholar 

  18. Diaz R, Mayorga LS, Mayorga LE, Stahl PD. In vitro clustering and multiple fusion among macrophage endosomes. J Biol Chem 1989, 264:13171–13180.

    PubMed  CAS  Google Scholar 

  19. Mayorga L, Diaz R, Stahl P. Plasma membrane-derived vesicles containing receptor-ligand complexes are fuso-genic with early endosomes in a cell-free system. J Biol Chem 1988, 263:17213–17216.

    PubMed  CAS  Google Scholar 

  20. Mayorga L, Diaz R, Stahl P. Regulatory role for GTP-binding proteins in endocytosis. Science 1989, 244:1475–1477.

    Article  PubMed  CAS  Google Scholar 

  21. Gorvel J-P, Chavrier P, Zerial M, Gruenberg J. rab5 controls early endosome fusion in vitro. Cell 1991, 64:915–925.

    Article  PubMed  CAS  Google Scholar 

  22. Clary JO, Griff IC, Rothman JE. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 1990, 61:709–721.

    Article  PubMed  CAS  Google Scholar 

  23. Muller WA, Steinman RM, Cohn ZA. The membrane proteins of the vacuolar system II. Bidirectional flow between secondary lysosomes and plasma membrane. J Cell Biol 1980, 86:304–314.

    Article  PubMed  CAS  Google Scholar 

  24. Pitt A, Mayorga LS, Schwartz AL, Stahl PD. Recycling of phagosomal components to an endosomal compartment. 1991. Submitted.

    Google Scholar 

  25. Harding CV, Collins DS, Slot JW, Geuze HJ, Unanue ER. Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell 1991, 64:393–401.

    Article  PubMed  CAS  Google Scholar 

  26. Peters PJ, Neefjes JJ, Oorschot V, Ploegh HL, Geuze HJ. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature 1991, 349:669–676.

    Article  PubMed  CAS  Google Scholar 

  27. Lang T, de Chastellier C, Ryter A, Thilo L. Endocytic membrane traffic with respect to phagosomes in macrophages infected with non-pathogenic bacteria: phagosomal membrane acquires the same composition as lysosomal membrane. Eur J Cell Biol 1988, 46:39–50.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mayorga, L.S., Pitt, A., Stahl, P.D. (1992). Receptor-mediated endocytosis and phagocytosis share common determinants for intracellular traficking. In: van Furth, R. (eds) Mononuclear Phagocytes. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8070-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8070-0_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4171-5

  • Online ISBN: 978-94-015-8070-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics