Skip to main content

Effect of Salinity on Physiological Processes in Plants

  • Chapter
  • First Online:
Microorganisms in Saline Environments: Strategies and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 56))

Abstract

Soil salinity is amongst the most severe globally threatening abiotic stress problems that affects approximately 20% of irrigated lands and reduces crop yields and productivity significantly. The process of soil salinization can be majorly attributed to natural contributors such as weathering of parental rocks, oceanic salt deposition and groundwater table fluctuations, while the common anthropogenic factors contributing to salinization include irrigational water and the incessant and disproportionate usage of inorganic fertilizers and pesticides. In saline environs, soil salinity affects plants in several ways and induces dissimilar but distinctive stresses such as osmotic, ionic and oxidative stress. As a consequence of excessive accumulation and toxicity of excessive Na+ and Cl in the plants, there is a negative effect on almost every known physiological and biochemical metabolic pathway in plants which includes inhibition of photosynthetic activities, membrane disorder, production of toxic metabolites, production of ROS and attenuated water and nutrient acquisition leading to physiological drought, chlorosis and necrosis and cell and subsequently whole plant death as a result of Na+ and Cl intrusion on many physiological processes in plants. Plants grown in saline environments device a series of adaptive measures to acclimatize to saline conditions; this includes morphological, physiological and biochemical variations. These variations comprise of upsurges in the photosynthetic pigment composition, root/canopy quotient as well as leaf anatomy and ion compartmentalization that ultimately leads to reduction in leaf ion toxicity, thus preserving the water status, limiting water loss and, hence, protecting the process of photosynthesis. This chapter thus discusses the effects of salinity on physiological processes of plants. It also provides some future viewpoints which will widen scientific understanding of exactly how soil salinity distresses the physiological physiognomies of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi GH, Akhtar J, Haq MA, Ali S, Chen ZH, Malik W (2014) Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pak J Bot 46:135–146

    Google Scholar 

  • Abbasi H, Moazzam J, Anwar H, Shafaqat A, Rafiq A, Zafar M, Parveen D (2016) Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculture 103(2):229–238

    Article  Google Scholar 

  • Abdel LAA (2011) Ameliorative effect of calcium chloride on growth, antioxidant enzymes, protein patterns and some metabolic activities of canola (Brassica napus L) under seawater stress. J Plant Nutr 34:1303–1320

    Article  CAS  Google Scholar 

  • Abdel LAA, Chaoxing H (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants. J Plant Growth Regul 10:23–31

    Google Scholar 

  • Abdel L, Miransari M (2014) The role of arbuscular mycorrhizal fungi in alleviation of salt stress. Springer, New York, pp 23–33

    Google Scholar 

  • Abdel-Lateef A (2008) Phosphoenolpyruvate carboxylase activity of wheat and maize seedlings subjected to salt stress. Aust J Basic Appl Sci 2:37–41

    Google Scholar 

  • Abdel-Lateef AA (2010) Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res Commun 38:43–55

    Article  CAS  Google Scholar 

  • Abdel-Lateef AHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  CAS  Google Scholar 

  • Abdel-Lateef AA, Shaddad KAM, Ismail MA, Abu AFM (2009) Benzyladenine can alleviate saline injury of two roselle (Hibiscus sabdariffa) cultivars via equilibration of cytosolutes including anthocyanins. Int J Agric Biol 11:151–157

    Google Scholar 

  • Abdeshahian M, Nabipour M, Meskarbashee M (2010) Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. Int J Chem Biol Eng 4:184–186

    Google Scholar 

  • Acosta-Motos JR, Álvarez S, Barba-Espín G, Hernández JA, Sánchez-Blanco MJ (2014) Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. Plant Physiol Biochem 85:41–50

    Article  CAS  PubMed  Google Scholar 

  • Adiku G, Renger M, Wessolek G, Facklam M, Hech-Bischoltz C (2001) Simulation of dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agric Water Manag 47:55–68

    Article  Google Scholar 

  • Akram MS, Ashraf M (2011) Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower (Helianthus annuus L.). J Plant Nutr 34:1041–1057

    Article  CAS  Google Scholar 

  • Akram MS, Athar HUR, Ashraf M (2007) Improving growth and yield of sunflower (Helianthus annuus L.) by foliar application of potassium hydroxide (KOH) under salt stress. Pak J Bot 39:769–776

    Google Scholar 

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali EF, Hassan FAS (2014) Alleviatory effects of salt stress by mycorrhizal fungi and gibberellic acid on chamomile plant. Int J Sci Res 3(11):109–111

    Google Scholar 

  • Ali S, Zeng F, Cai S, Qiu B, Zhang G (2011) The interaction of salinity and chromium in the influence of barley growth and oxidative stress. Plant Soil Environ 57:153–159

    Article  CAS  Google Scholar 

  • Ali AS, Mohamed BF, Dreyling G (2014) Salt tolerance and effects of salinity on some agricultural crops in the Sudan. J For Prod Ind 3(2):56–65

    Google Scholar 

  • Al-Taweel K, Iwaki T, Yabuta Y et al (2007) A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145:258–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvino A, D’Andria R, Delfine S, Lavini A, Zanetti P (2000) Effect of water and salinity stress on radiation absorption and efficiency in sunflower. Ital J Agron 4:53–60

    Google Scholar 

  • Amira MS, Abdul Q (2010) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10:7–15

    Google Scholar 

  • Aragao MEF, Guedes MM, Otoch MLO et al (2005) Differential responses of ribulose-1, 5-bisphosphate carboxylase/oxygenase activities of two Vigna unguiculata cultivars to salt stress. Braz J Plant Physiol 17:207–212

    Article  Google Scholar 

  • Ashok A, Nisha K, Karishma N, Anju T, Gupta KK (2012) Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. J Appl Nat Sci 4(1):144–155

    Article  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Atilla LT (2014) Influence of foliarly applied different triazole compounds on growth, nutrition, and antioxidant enzyme activities in tomato (Solanum lycopersicum L.) under Salt Stress. Aust J Crop Sci 8(1):71–79

    Google Scholar 

  • Ayala-Astorga GI, Alcaraz-Melendez L (2010) Salinity effects on protein content, lipid peroxidation, pigments and praline in Paulownia imperialis (Siebold and Zaccarini) and Paulownia fortunei (Seemann and Hemsley) plant grown in vitro. Electron J Biomed 13:1–15

    Google Scholar 

  • Azeem M, Ahmad R (2011) Foliar application of some essential minerals on tomato (Lycopersicon esculentum) plant grown under two different salinity regimes. Pak J Bot 43:1513–1520

    Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. J Soil Sci Plant Nutr 13(1):123–141

    Google Scholar 

  • Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and it’s role in the physiology and metabolism of flowering plants. Int Rev Cytol 110:205–254

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Bie Z, Ito T, Shinohara Y (2004) Effects of sodium sulfate and sodium bicarbonate on the growth, gas exchange and mineral composition of lettuce. Sci Hortic 99:215–224

    Article  CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viegas RA, Silveira JAG (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytol 163(3):563–571

    Article  CAS  PubMed  Google Scholar 

  • Çavişoglu KS, Kiliç S, Kabar K (2007) Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines. Acta Physiol Plant 29:551–557

    Article  CAS  Google Scholar 

  • Ceccoli G, Ramos JC, Ortega LI, Acosta JM, Perreta MG (2011) Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots. Biocell 35(1):9–17

    PubMed  Google Scholar 

  • Cheruth J, Ragupathi G, Ashot K, Paramasivam M, Beemarao S, Rajaram P (2008) Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiol Plant 30(3):287–292

    Article  CAS  Google Scholar 

  • Chrominski A, Bhat RB, Weber DJ, Smith BN (1988) Osmotic stress-dependent conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene in the halophyte, Allenrolfea occidentalis. Environ Exp Bot 28:171–174

    Article  CAS  Google Scholar 

  • Cirillo C, Rouphael Y, Caputo R, Raimondi G, Sifola MI, De Pascale S (2016) Effects of high salinity and the exogenous of an osmolyte on growth, photosynthesis and mineral composition in two ornamental shrubs. J Hortic Sci Biotechnol 91:14–22

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera C, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Leonardi C, Bie Z (2010) Role of grafting in vegetable crops grown under saline conditions. Sci Hortic 127:147–155

    Article  Google Scholar 

  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Funct Plant Biol 25:395–402

    Article  CAS  Google Scholar 

  • Delfine S, Alvino A, Villani MC, Loreto F (1999) Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119:1101–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Martino C, Delfine S, Alvino A, Loret F (1999) Photorespiration rate in spinach leaves under moderate NaCl stress. Photosynthetica 36:233–242

    Article  Google Scholar 

  • Dodd IC (2005) Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant Soil 74:257–275

    Google Scholar 

  • Dogan M, Tipirdamaz R, Demir Y (2010) Salt resistance of tomato species grown in sand culture. Plant Soil Environ 56:499–507

    Article  CAS  Google Scholar 

  • Doganlar ZB, Demir K, Basak H et al (2010) Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. Afr J Agric Res 5:2056–2065

    Google Scholar 

  • Ebrahim KE (2014) Role of arbuscular mycorrhizal fungi in fighting soil salinity. Published Ph.D. Thesis, Royal Holloway-University of London, London

    Google Scholar 

  • Evelin H, Kapoor R (2013) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum Plants. Mycorrhiza 5:45–77

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2011) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:1–15

    Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenumgraecum. Mycorrhiza 23:71–86

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Zhang FS, Li X, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Frechill S, Lasa B, Ibarretxe L, Lamsfus C, Aparicio TP (2001) Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regul 35:171–179

    Article  Google Scholar 

  • Franco JA, Bañón S, Vicente MJ, Miralles J, Martínez-Sánchez JJ (2011) Root development in horticultural plants grown under abiotic stress conditions—a review. J Hortic Sci Biotechnol 86:543–556

    Article  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (Pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59:3039–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Bagchi S, Majumder AL (2001) Chloroplast fructose-1,6-bisphosphatase from Oryza differs in salt tolerance property from the porteresia enzyme and is protected by osmolytes. Plant Sci 160:1171–1181

    Article  CAS  PubMed  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, maybe partly related to elevated K+/Na+ ratio in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P et al (eds) Salt stress in plants: signalling, omics and adaptations. Springer, New York, pp 301–354

    Chapter  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenreider C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hamdia MA, Shaddad MAK (2010) Salt tolerance of crop plants. Review. J Stress Physiol Biochem 6:64–90

    Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, p 159

    Google Scholar 

  • Hassanein RA, Hassanein AA, Haider AS, Hashem HA (2009) Improving salt tolerance of Zea mays l. plants by presoaking their grains in glycine betaine. Aust J Basic Appl Sci 3:928–942

    CAS  Google Scholar 

  • He E, Ikhajiagba B, Bamidele JF, Ogic-odia E (2008) Salinity effects on young healthy seedling of Kyllingia peruviana collected from Escravos, Delta state. Glob J Environ Res 2(2):74–88

    Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  CAS  Google Scholar 

  • Heuer B, Yaniv Z, Ravina I (2002) Effect of late salinization of chia (Salvia hispanica), stock (Matthiola tricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality. Ind Crop Prod 15(2):163–167

    Article  CAS  Google Scholar 

  • Hu YC, Schnyder H, Schmidhalter U (2000) Carbohydrate deposition and partitioning in elongating leaves of wheat under saline soil conditions. Aust J Plant Physiol 27:363–370

    CAS  Google Scholar 

  • Hussein MM, Abo-Leila BH, Metwally SA, Leithy SZ (2012) Anatomical structure of jatropha leaves affected by proline and salinity conditions. J Appl Sci Res 8(1):491–496

    CAS  Google Scholar 

  • Jaarsma R, Rozemarijn SM, Albertus H (2013) Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS One 8(3):60–183

    Article  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jamil M, Rehman SU, Lee KJ, Kim JM, Rha HK (2007) Salinity reduced growth Ps2 photochemistry and chlorophyll content in radish. Sci Agric (Piracicaba, Braz.) 64(2):111–118

    Article  CAS  Google Scholar 

  • Javid MJ, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jing C, Xiu YL, Ling C, Jia JX, Hai YL (2015) Effects of salinity on the growth, physiology and relevant gene expression of an annual halophyte grown from heteromorphic seeds. AoB Plants 7:112

    Google Scholar 

  • Jose RA, Maria FO, Agustina BV, Pedro DV, Maria JS, Jose AH (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(18):2–38

    Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Kapoor K, Srivastava A (2010) Assessment of salinity tolerance of Vinga Mungo var. Pu-19 using ex vitro and in vitro methods. Asian J Biotechnol 2(2):73–85

    Article  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, LLC, Berlin, pp 359–401

    Chapter  Google Scholar 

  • Karen W, Anthony RY, Timothy JF (2002) Effects of salinity and ozone, individually and in combination on growth and ion contents of two chickpea (Cicer aritinum L.) varieties. Environ Pollut 120(2):397–403

    Article  Google Scholar 

  • Karimi G, Ghorbanli M, Heidari H, Khavarinejad RA, Assareh MH (2005) The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrate. Biologia Plantarum 49:301–304

    Article  Google Scholar 

  • Kaya C, Higgs D, Kirnak H (2001) Effects of supplementary phosphorus and potassium on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). J Plant Nutr 24:1457–1471

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    Article  CAS  Google Scholar 

  • Kekere O (2014) Growth, yield and seed nutritional composition of groundnut (Arachis hypogaea LINN) under elevated level of soil salinity. Mol Soil Biol 5(5):31–38

    Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Kholova J, Sairam RK, Meena RC (2010) Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiol Plant 32(3):477–486

    Article  CAS  Google Scholar 

  • Läuchli A, Lüttge U (2002) Salinity: environment-plants-molecules. Kluwer Academic, Dordrecht, p 14

    Google Scholar 

  • Lee G, Carrow RN, Duncan RR (2004) Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci 166(6):1417–1425

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macro nutrients. Curr Opin Plant Biol 12:250–258

    Article  CAS  PubMed  Google Scholar 

  • Mahmood K (2011) Salinity tolerance in barley (Hordeum vulgare L.): effects of varying NaCl, K+/Na+ and NaHCO3 levels on cultivars differing in tolerance. Pak J Bot 43:1651–1654

    CAS  Google Scholar 

  • Marcelis LFM, Van Hooijdonk J (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil 215:57–64

    Article  CAS  Google Scholar 

  • Martínez-Ballesta MC, Aparicio F, Pallás V et al (2003) Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. J Plant Physiol 160:689–697

    Article  PubMed  Google Scholar 

  • Mathur N, Singh J, Bohra S, Bohra A, Vyas A (2006) Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. Am J Plant Physiol 1(2):210–213

    Article  Google Scholar 

  • Mathur N, Singh J, Bohra S, Vyas A (2007) Arbuscular mycorrhizal status of medicinal halophytes in saline areas of Indian Thar Desert. Int J Soil Sci 2:119–127

    Article  Google Scholar 

  • Memon SA, Hou X, Wang LJ (2010) Morphological analysis of salt stress response of Pak Choi. EJEAFChe 9(1):248–254

    CAS  Google Scholar 

  • Miransari M (2017) Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 148–150

    Google Scholar 

  • Miransari M, Abrishamchib A, Khoshbakht K, Niknam V (2014) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol 34(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz KM, Ruqaya S, Al-Mas’oudi M, Al-Said F, Khan I (2013) Salinity effects on growth, electrolyte leakage, chlorophyll content and lipid peroxidation in cucumber (Cucumis sativus L.). Int Conf Food Agric Sci 55:30–32

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Article  Google Scholar 

  • Nasim G (2010) The role of arbuscular mycorrhizae in inducing resistance in drought and salinity stress in crops. In: Ashraf M, Ozturk M, MSA A (eds) Plant adaptation and phytoremediation, vol 1. Springer, Berlin, pp 119–141

    Chapter  Google Scholar 

  • Nayer AKKS, Sara TA, Mohammad P (2013) Comparative study of different salts (sodium chloride, sodium sulfate, potassium chloride, and potassium sulfate) on growth of forage species. J Plant Nutr 36(2):214–230

    Article  CAS  Google Scholar 

  • Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  CAS  PubMed  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Crop physiology and metabolism sorghum and salinity II – gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44(3):806–811

    Article  Google Scholar 

  • Niu G, Rodriguez DS (2006) Relative salt tolerance of five herbaceous perennials. Hortic Sci 41:1493–1497

    Google Scholar 

  • Okon OG (2018) Effects of arbuscular mycorrhizal fungi inoculation on the growth and physiology of some vegetables grown in saline soil amended with poultry manure. Unpublished Ph.D. Thesis, University of Uyo, Akwa Ibom State

    Google Scholar 

  • Ola HAE, Reham EF, Eisa SS, Habib SA (2012) Morpho-anatomical changes in salt stressed kallar Grass (Leptochloa fusca L. Kunth). Res J Agric Biol Sci 8(2):158–166

    Google Scholar 

  • Olesen K, Andreasson LE (2003) The function of the chloride ion in photosynthetic oxygen evolution. Biochemistry 42(7):2025–2035

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz A, Munir O, Satyawati S, Salih G (2014) Effect of sodium carbonate-induced salinity–alkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry (Morus alba L.) cultivars. J Plant Interact 9(1):460–467

    Article  CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R et al (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Quillerou E, Nangia V et al (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295

    Article  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263

    Article  Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Rehman M, Siddiqi TO, Ahmad P (2012) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24

    Google Scholar 

  • Raul L, Andres O, Armado L, Bernardo M, Enrique T (2003) Response to salinity of three grain legumes for potential cultivation in arid areas (plant nutrition). Soil Sci Plant Nutr 49(3):329–336

    Article  Google Scholar 

  • Rui MAM, Ricardo PS (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(30):1–13

    Google Scholar 

  • Rui L, Wei S, Mu-xiang C, Cheng-jun J, Min W, Bo-ping Y (2009) Leaf anatomical changes of Burguiera gymnorrhiza seedlings under salt stress. J Trop Subtrop Bot 17(2):169–175

    Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant system in wheat genotypes tolerance to water stress. Biol Plant 41:387–394

    Article  CAS  Google Scholar 

  • Saleem A, Ashraf M, Akram NA (2011) Salt (NaCl) induced modulation in some key physio-biochemical attributes in Okra (Abelmoschus esculentus L.). J Agron Crop Sci 197:202–213

    Article  CAS  Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103:93–99

    Article  CAS  Google Scholar 

  • Saule A, Akmaral N, Subhash M, Aygul A, Saule K, Saule A, Asil N, Anar Z, Saltanat A, Ravilya A, Tamara L (2013) The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). Afr J Biotechnol 12(18):2366–2377

    Google Scholar 

  • Saxena B, Giri B, Shukla K (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 68–73

    Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith CJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141(4):1653–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root anti-oxidative system. Physiol Plant 112(4):487–494

    Article  CAS  PubMed  Google Scholar 

  • Shan SW (2009) Enhanced phytoremediation of salt-impacted soils using plant growth-promoting rhizobacteria (PGPR). Published Master’s Thesis, University of Waterloo, Waterloo

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidant defense mechanism in plants under stressful conditions. A review. J Bot 2012:1–26

    Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    Article  PubMed  Google Scholar 

  • Shou-Jun Y, Zhong-Lan Z, Yuan-Xia X, Zhi-Fen Z, Shu-Yi S (2014) Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Bot Stud 55(70):4–7

    Google Scholar 

  • Siler B, Misic D, Filipovic B, Popovic Z, Cvetic T, Mijovic A (2007) Effects of salinity on in vitro growth and photosynthesis of common centaury (Centaurium erythraea Rafn.). Achiev Biol Sci 59(2):129–134

    Article  Google Scholar 

  • Silveira JAG, Melo ARB, Viegas RA, Oliveira JTA (2001) Salinity induced effects on nitrogen assimilation related to growth in cowpea plants. Environ Exp Bot 46:171–179

    Article  CAS  Google Scholar 

  • Taffouo VD, Kouamou JK, Ngalangue LMT, Ndjeudji BAN, Akoa A (2009) Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna ungiuculata L., walp) cultivars. Int J Bot 5(2):135–143

    Article  CAS  Google Scholar 

  • Taffouo VD, Wamba OF, Yombi E, Nono GV, Akoe A (2010) Growth, yield, water status and ionic distribution response of three Bambara groundnut (Vigna subterranean (L.) verdc.) landraces grown under saline conditions. Int J Bot 6(1):53–58

    Article  CAS  Google Scholar 

  • Teixeira M, Carvalho IS (2009) Effects of salt stress on purslane (Portulaca oleracea) nutrition. Ann Appl Biol 154:77–86

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tort N, Turkyilmaz B (2004) A physiological investigation on the mechanisms of salinity tolerance in some barley culture forms. JFS 27:1–16

    Google Scholar 

  • Tudela D, Primo-Millo E (1992) l-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol 100:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turan MA, Kalkat V, Taban S (2007) Salinity-induced stomatal resistance, proline, chlorophyll and ion concentrations of bean. Int J Agric Res 2(5):483–488

    Article  CAS  Google Scholar 

  • Uddin MK, Shamsuzzaman S, Zi LQ, Mohdselamat MH (2017) Effects of salinity on growth, antioxidant contents and proximate compositions of Sabah snake grass (Clinacanthus Nutans (Burm. F.) Lindau). Bangladesh J Bot 46(1):263–269

    Google Scholar 

  • Ulfat M, Athar HR, Ashraf M, Akram NA, Jamil A (2007) Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.). Pak J Bot 39:1593–1608

    Google Scholar 

  • US Department of Agriculture (2008) Research database. Bibliography on salt tolerance. In: George E, Brown Fr (eds) Salinity lab. US Department of Agriculture. Serv. Riverside, CA. http://www.Ars.usda.gov/Services/docs.htm?docid=8908. Retrieved 26 Aug 2008

  • Uzun S, Uzun O, Kaplan M, Ilbas AI (2013) Response of bitter vetch lines to salt stress. Bulgarian J Agric Sci 19(5):1061–1067

    Google Scholar 

  • Valentine AJ, Mortimer PE, Lintnaar M et al (2006) Drought responses of arbuscular mycorrhizal grapevines. Symbiosis 41(3):127–133

    CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    Article  CAS  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkaki U (2000) Advances in chloride nutrition. Adv Agron 68:96–150

    Google Scholar 

  • Yeo AR (2007) Salinity. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blackwell, Oxford, pp 340–365

    Chapter  Google Scholar 

  • Yilmaz H, Kina A (2008) The influence of Nacl salinity on some vegetative and chemical changes of strawberries (Fragaria xananassa L.). Afr J Biotechnol 7(18):3299–3305

    CAS  Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35:319–328

    Article  Google Scholar 

  • Zhao GQ, Ma BL, Ren CZ (2007) Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci 47(1):123–131

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okon, O.G. (2019). Effect of Salinity on Physiological Processes in Plants. In: Giri, B., Varma, A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_10

Download citation

Publish with us

Policies and ethics