Skip to main content

Chronometric Geodesy: Methods and Applications

  • Chapter
  • First Online:
Relativistic Geodesy

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 196))

Abstract

The theory of general relativity was born more than one hundred years ago, and since the beginning has striking prediction success. The gravitational redshift effect discovered by Einstein must be taken into account when comparing the frequencies of distant clocks. However, instead of using our knowledge of the Earth’s gravitational field to predict frequency shifts between distant clocks, one can revert the problem and ask if the measurement of frequency shifts between distant clocks can improve our knowledge of the gravitational field. This is known as chronometric geodesy. Since the beginning of the atomic time era in 1955, the accuracy and stability of atomic clocks were constantly ameliorated, with around one order of magnitude gained every ten years. Now that the atomic clock accuracy reaches the low \(10^{-18}\) in fractional frequency, and can be compared to this level over continental distances with optical fibres, the accuracy of chronometric geodesy reaches the cm level and begins to be competitive with classical geodetic techniques such as geometric levelling and GNSS/geoid levelling. Moreover, the building of global timescales requires now to take into account these effects to the best possible accuracy. In this chapter we explain how atomic clock comparisons and the building of timescales can benefit from the latest developments in physical geodesy for the modelization and realization of the geoid, as well as how classical geodesy could benefit from this new type of observable, which are clock comparisons that are directly linked to gravity potential differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Resolution 1 of the 13th General Conference on Weights and Measures (CGPM) [7].

  2. 2.

    This is based on the numbers given in table 1 of [10] and table 1 of [11]: the relative accuracy of the gravitational part of the relativistic shift effect is taken as \((\sqrt{18^2+10^2+7^2}\ \mathrm{ns}) / (179 \ \mathrm{ns})\).

  3. 3.

    In the Newtonian sense, the geoid is the equipotential of the Earth’s gravity (Newtonian) potential, which best coincides with the (mean) surface of the oceans.

  4. 4.

    All IAU Resolutions can be found at http://www.iau.org/administration/resolutions/general_assemblies/.

  5. 5.

    projects.npl.co.uk/itoc.

  6. 6.

    See http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html.

  7. 7.

    One can notice that the separation between a gravitational red-shift and a Doppler effect is specific to the chosen coordinate system. One can read the book by Synge [121] for a different interpretation in terms of relative velocity and Doppler effect only.

  8. 8.

    Here we use notation \(W_\mathrm{geoid}\) instead of the commonly used \(W_0\), in order to emphasize that there is no generally accepted conventional and unified value of the geoid gravity potential value.

References

  1. R.V. Pound, G.A. Rebka, Resonant absorption of the 14.4-kev \(\gamma \) ray from 0.10-\(\mu \)sec \({\rm fe}^{57}\). Phys. Rev. Lett. 3(12), 554–556 (1959)

    Article  ADS  Google Scholar 

  2. R.V. Pound, G.A. Rebka, Gravitational red-shift in nuclear resonance. Phys. Rev. Lett. 3(9), 439–441 (1959)

    Article  ADS  Google Scholar 

  3. R.V. Pound, G.A. Rebka, Apparent weight of photons. Phys. Rev. Lett. 4(7), 337–341 (1960)

    Article  ADS  Google Scholar 

  4. R.V. Pound, J.L. Snider, Effect of gravity on gamma radiation. Phys. Rev. 140(3B), B788–B803 (1965)

    Article  ADS  Google Scholar 

  5. Norman F. Ramsey, History of early atomic clocks. Metrologia 42(3), S1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Sigfrido Leschiutta, The definition of the ‘atomic’ second. Metrologia 42(3), S10 (2005)

    Article  ADS  Google Scholar 

  7. J. Terrien, News from the international bureau of weights and measures. Metrologia 4(1), 41 (1968)

    Article  ADS  Google Scholar 

  8. Leonard S. Cutler, Fifty years of commercial caesium clocks. Metrologia 42(3), S90 (2005)

    Article  ADS  Google Scholar 

  9. B. Guinot, E.F. Arias, Atomic time-keeping from 1955 to the present. Metrologia 42(3), S20 (2005)

    Article  Google Scholar 

  10. J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: predicted relativistic time gains. Science 177(4044), 166–168 (1972)

    Article  ADS  Google Scholar 

  11. J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: observed relativistic time gains. Science 177, 168–170 (1972)

    Article  ADS  Google Scholar 

  12. L. Briatore, S. Leschiutta, Evidence for the Earth gravitational shift by direct atomic-time-scale comparison. Nuovo Cim. B 37(2), 219–231 (1977)

    Article  ADS  Google Scholar 

  13. Jean-Marc Lévy-Leblond, One more derivation of the Lorentz transformation. Am. J. Phys. 44(3), 271–277 (1976)

    Article  ADS  Google Scholar 

  14. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973)

    Google Scholar 

  15. Jeffrey M. Cohen, Harry E. Moses, New test of the synchronization procedure in noninertial systems. Phys. Rev. Lett. 39(26), 1641–1643 (1977)

    Article  ADS  Google Scholar 

  16. J.M. Cohen, H.E. Moses, A. Rosenblum, Clock-transport synchronization in noninertial frames and gravitational fields. Phys. Rev. Lett. 51(17), 1501–1502 (1983)

    Article  ADS  Google Scholar 

  17. J.M. Cohen, H.E. Moses, A. Rosenblum, Electromagnetic synchronisation of clocks with finite separation in a rotating system. Class. Quantum Grav. 1(6), L57 (1984)

    Article  ADS  Google Scholar 

  18. M.F. Podlaha, Note on the Cohen, Moses and Rosenblum letter about the slow-clock transport synchronization in noninertial reference systems. Lett. Nuovo Cim. 40(7), 223–224 (1984)

    Article  ADS  Google Scholar 

  19. N. Ashby, D.W. Allan, Coordinate time on and near the Earth. Phys. Rev. Lett. 53(19), 1858–1858 (1984)

    Article  ADS  Google Scholar 

  20. N. Ashby, D.W. Allan, Coordinate time on and near the Earth (erratum). Phys. Rev. Lett. 54(3), 254–254 (1985)

    Article  ADS  Google Scholar 

  21. M. Born, Einstein’s Theory of Relativity (Dover Publications, New York, 1962)

    Google Scholar 

  22. C. Møller, Theory of Relativity, 2nd edn. (Oxford University Press, Oxford, 1976)

    Google Scholar 

  23. N. Ashby, D.W. Allan, Practical implications of relativity for a global coordinate time scale. Radio Sci. 14(4), 649–669 (1979)

    Article  ADS  Google Scholar 

  24. D.W. Allan, N. Ashby, Coordinate Time in the Vicinity of the Earth, vol. 114 (1986), pp. 299–312

    Chapter  Google Scholar 

  25. A.J. Skalafuris, Current theoretical attempts toward synchronization of a global satellite network. Radio Sci. 20(6), 1529–1536 (1985)

    Article  ADS  Google Scholar 

  26. N. Ashby, Relativity in the global positioning system. Living Rev. Relativ. 6, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  27. B. Coll, A Principal Positioning System for the Earth, vol. 14 (2003), pp. 34–38, arXiv:gr-qc/0306043

  28. Carlo Rovelli, GPS observables in general relativity. Phys. Rev. D 65(4), 044017 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. Marc Lachièze-Rey, The covariance of GPS coordinates and frames. Class. Quantum Grav. 23(10), 3531 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. B. Coll, J.A. Morales, Symmetric frames on Lorentzian spaces. J. Math. Phys. 32(9), 2450–2455 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Blagojević, J. Garecki, F.W. Hehl, Y.N. Obukhov, Real null coframes in general relativity and GPS type coordinates. Phys. Rev. D 65(4), 044018 (2002)

    Google Scholar 

  32. P. Delva, U. Kostić, A. Čadež, Numerical modeling of a Global Navigation Satellite System in a general relativistic framework. Adv. Space Res. 47(2), 370–379 (2011)

    Article  ADS  Google Scholar 

  33. D. Bini, A. Geralico, M.L. Ruggiero, A. Tartaglia, Emission versus Fermi coordinates: applications to relativistic positioning systems. Class. Quantum Grav. 25(20), 205011 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. Tartaglia, Emission coordinates for the navigation in space. Acta Astronaut. 67(5), 539–545 (2010)

    Article  ADS  Google Scholar 

  35. N. Puchades, D. Sáez, Relativistic positioning: four-dimensional numerical approach in Minkowski space-time. Astrophys. Space Sci. 341(2), 631–643 (2012)

    Article  ADS  Google Scholar 

  36. D. Bunandar, S.A. Caveny, R.A. Matzner, Measuring emission coordinates in a pulsar-based relativistic positioning system. Phys. Rev. D 84(10), 104005 (2011)

    Article  ADS  Google Scholar 

  37. V.A. Brumberg, General discussion, in Relativity in celestial mechanics and astrometry, proceedings of the IAU symposium No.114, ed. by J. Kovalesky and V.A. Brumberg (D. Reidel publishing company, 1986)

    Google Scholar 

  38. B. Guinot, Is the International Atomic Time TAI a coordinate time or a proper time? Celest. Mech. 38, 155–161 (1986)

    Article  ADS  Google Scholar 

  39. B. Guinot, P.K. Seidelmann, Time scales - their history, definition and interpretation. Astron. Astrophys. 194, 304–308 (1988)

    ADS  Google Scholar 

  40. T.-Y. Huang, B.-X. Xu, J. Zhu, H. Zhang, The concepts of International Atomic Time (TAI) and Terrestrial Dynamic Time (TDT). Astron. Astrophys. 220, 329–334 (1989)

    ADS  Google Scholar 

  41. V.A. Brumberg, S.M. Kopeikin, Relativistic time scales in the solar system. Celest. Mech. Dyn. Astron. 48, 23–44 (1990)

    Article  ADS  MATH  Google Scholar 

  42. S.A. Klioner, The problem of clock synchronization: a relativistic approach. Celest. Mech. Dyn. Astron. 53(1), 81–109 (1992)

    Article  ADS  Google Scholar 

  43. N. Ashby, B. Bertotti, Relativistic perturbations of an earth satellite. Phys. Rev. Lett. 52(7), 485–488 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  44. T. Fukushima, The Fermi coordinate system in the post-Newtonian framework. Celest. Mech. 44, 61–75 (1988)

    Article  ADS  MATH  Google Scholar 

  45. N. Ashby, B. Bertotti, Relativistic effects in local inertial frames. Phys. Rev. D 34(8), 2246–2259 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  46. S.M. Kopejkin, Celestial coordinate reference systems in curved space-time. Celest. Mech. 44, 87–115 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. M.H. Soffel, Relativity in Astrometry, Celestial Mechanics, and Geodesy (Springer, Berlin, 1989)

    Chapter  Google Scholar 

  48. V.A. Brumberg, S.M. Kopejkin, Relativistic theory of celestial reference frames, in Reference Frames, Astrophysics and Space Science Library, vol. 154, ed. by J. Kovalevsky, I.I. Mueller, B. Kolaczek (Springer, Netherlands, 1989), pp. 115–141

    Chapter  Google Scholar 

  49. V.A. Brumberg, S.M. Kopejkin, Relativistic reference systems and motion of test bodies in the vicinity of the earth. Nuovo Cim. 103(1), 63–98 (1989)

    Article  ADS  Google Scholar 

  50. T. Damour, M. Soffel, C. Xu, General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys. Rev. D 43(10), 3273–3307 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  51. S.M. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, New York, 2011)

    Book  MATH  Google Scholar 

  52. U. Kostić, M. Horvat, A. Gomboc, Relativistic positioning system in perturbed spacetime. Class. Quantum Grav. 32(21), 215004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  53. D. Bini, B. Mashhoon, Relativistic gravity gradiometry. Phys. Rev. D 94(12), 124009 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Soffel, S.A. Klioner, G. Petit, P. Wolf, S.M. Kopeikin, P. Bretagnon, V.A. Brumberg, N. Capitaine, T. Damour, T. Fukushima, B. Guinot, T.-Y. Huang, L. Lindegren, C. Ma, K. Nordtvedt, J.C. Ries, P.K. Seidelmann, D. Vokrouhlický, C.M. Will, C. Xu, The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126(6), 2687 (2003)

    Article  ADS  Google Scholar 

  55. S.A. Klioner, N. Capitaine, W.M. Folkner, B. Guinot, T.-Y. Huang, S.M. Kopeikin, E.V. Pitjeva, P.K. Seidelmann, M.H. Soffel, Units of relativistic time scales and associated quantities, in Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings of the International Astronomical Union, vol. 5 (2009), pp. 79–84

    Article  Google Scholar 

  56. E.F. Arias, G. Panfilo, G. Petit, Timescales at the BIPM. Metrologia 48(4), S145 (2011)

    Article  ADS  Google Scholar 

  57. A. Bjerhammar, Discrete approaches to the solution of the boundary value problem in physical geodesy. Bolletino di geodesia e scienze affini 2, 185–241 (1975)

    Google Scholar 

  58. M. Vermeer, Chronometric levelling, Technical report, Finnish Geodetic Institute, Helsinki (1983)

    Google Scholar 

  59. A. Bjerhammar, On a relativistic geodesy. Bull. Geodesique 59(3), 207–220 (1985)

    Article  ADS  Google Scholar 

  60. H.S. Margolis, R.M. Godun, P. Gill, L.A.M. Johnson, S.L. Shemar, P.B. Whibberley, D. Calonico, F. Levi, L. Lorini, M. Pizzocaro, P. Delva, S. Bize, J. Achkar, H. Denker, L. Timmen, C. Voigt, S. Falke, D. Piester, C. Lisdat, U. Sterr, S. Vogt, S. Weyers, J. Gersl, T. Lindvall, M. Merimaa, International timescales with optical clocks (ITOC), in European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC), 2013 Joint (2013), pp. 908–911

    Google Scholar 

  61. J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F.N. Baynes, H.S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G.A. Costanzo, C. Clivati, F. Levi, D. Calonico, Geodesy and metrology with a transportable optical. Nat. Phys. 14(5), 437 (2018)

    Google Scholar 

  62. V.A. Brumberg, E. Groten, On determination of heights by using terrestrial clocks and GPS signals. J. Geod. 76(1), 49–54 (2002)

    Article  ADS  MATH  Google Scholar 

  63. R. Bondarescu, M. Bondarescu, G. Hetényi, L. Boschi, P. Jetzer, J. Balakrishna, Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophys. J. Int. 191(1), 78–82 (2012)

    Article  ADS  Google Scholar 

  64. C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Optical clocks and relativity. Science 329(5999), 1630–1633 (2010)

    Article  ADS  Google Scholar 

  65. G. Lion, I. Panet, P. Wolf, C. Guerlin, S. Bize, P. Delva, Determination of a high spatial resolution geopotential model using atomic clock comparisons. J. Geod. (2017), pp. 1–15

    Google Scholar 

  66. A. Bjerhammar, Relativistic geodesy. Technical Report NON118 NGS36, NOAA Technical Report (1986)

    Google Scholar 

  67. M. Soffel, H. Herold, H. Ruder, M. Schneider, Relativistic theory of gravimetric measurements and definition of the geoid. Manuscr. Geod. 13, 143–146 (1988)

    ADS  Google Scholar 

  68. B. Hofmann-Wellenhof, H. Moritz, Physical Geodesy (Springer Science & Business Media, 2006)

    Google Scholar 

  69. S.M. Kopejkin, Relativistic manifestations of gravitational fields in gravimetry and geodesy. Manuscr. Geod. 16, 301–312 (1991)

    ADS  Google Scholar 

  70. J. Müller, M. Soffel, S.A. Klioner, Geodesy and relativity. J. Geod. 82(3), 133–145 (2007)

    Article  ADS  MATH  Google Scholar 

  71. S.M. Kopeikin, E.M. Mazurova, A.P. Karpik, Towards an exact relativistic theory of Earth’s geoid undulation. Phys. Lett. A 379(26–27), 1555–1562 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. S.M. Kopeikin, W. Han, E. Mazurova, Post-Newtonian reference ellipsoid for relativistic geodesy. Phys. Rev. D 93(4), 044069 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  73. S.M. Kopeikin, Reference ellipsoid and geoid in chronometric geodesy. Front. Astron. Space Sci. 3 (2016)

    Google Scholar 

  74. J. Guéna, S. Weyers, M. Abgrall, C. Grebing, V. Gerginov, P. Rosenbusch, S. Bize, B. Lipphardt, H. Denker, N. Quintin, S.M.F. Raupach, D. Nicolodi, F. Stefani, N. Chiodo, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, C. Chardonnet, Y. Le Coq, M. Lours, G. Santarelli, A. Amy-Klein, R. Le Targat, O. Lopez, P.E. Pottie, G. Grosche, First international comparison of fountain primary frequency standards via a long distance optical fiber link. Metrologia 54(3), 348 (2017)

    Article  ADS  Google Scholar 

  75. C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, P.-E. Pottie, A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016)

    Article  ADS  Google Scholar 

  76. M. Schioppo, R.C. Brown, W.F. McGrew, N. Hinkley, R.J. Fasano, K. Beloy, T.H. Yoon, G. Milani, D. Nicolodi, J.A. Sherman, N.B. Phillips, C.W. Oates, A.D. Ludlow, Ultrastable optical clock with two cold-atom ensembles. Nat. Photonics 11(1), 48–52 (2017)

    Article  ADS  Google Scholar 

  77. N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, E. Peik, Single-ion atomic clock with \(3\times {}{10}^{-18}\) systematic uncertainty. Phys. Rev. Lett. 116(6), 063001 (2016)

    Google Scholar 

  78. H.S. Margolis, P. Gill, Least-squares analysis of clock frequency comparison data to deduce optimized frequency and frequency ratio values. Metrologia 52(5), 628 (2015)

    Article  ADS  Google Scholar 

  79. H.S. Margolis, P. Gill, Determination of optimized frequency and frequency ratio values from over-determined sets of clock comparison data. J. Phys.: Conf. Ser. 723(1), 012060 (2016)

    Google Scholar 

  80. P. Wolf, G. Petit, Relativistic theory for clock syntonization and the realization of geocentric coordinate times. Astron. Astrophys. 304, 653 (1995)

    ADS  Google Scholar 

  81. H. Denker, L. Timmen, C. Voigt, S. Weyers, E. Peik, H.S. Margolis, P. Delva, P. Wolf, G. Petit, Geodetic methods to determine the relativistic redshift at the level of \(10^{-18}\) in the context of international timescales – a review and practical results. J. Geod. 92(5), 487–516 (2018)

    Google Scholar 

  82. W. Torge, Geodesy, 2nd edn. (Berlin; New York, W. de Gruyter, 1991)

    Google Scholar 

  83. A. Bauch, Time and frequency comparisons using radiofrequency signals from satellites. Comptes Rendus Phys. 16(5), 471–479 (2015)

    Article  Google Scholar 

  84. E. Samain, Clock comparison based on laser ranging technologies. Int. J. Mod. Phys. D 24(08), 1530021 (2015)

    Article  ADS  Google Scholar 

  85. G. Petit, A. Kanj, S. Loyer, J. Delporte, F. Mercier, F. Perosanz, \(1\times 10^{-16}\) frequency transfer by GPS PPP with integer ambiguity resolutio. Metrologia 52(2), 301 (2015)

    Article  ADS  Google Scholar 

  86. S. Droste, C. Grebing, J. Leute, S.M.F. Raupach, A. Matveev, T.W. Hänsch, A. Bauch, R. Holzwarth, G. Grosche, Characterization of a 450 km baseline GPS carrier-phase link using an optical fiber link. New J. Phys. 17(8), 083044 (2015)

    Article  ADS  Google Scholar 

  87. J. Leute, N. Huntemann, B. Lipphardt, C. Tamm, P.B.R. Nisbet-Jones, S.A. King, R.M. Godun, J.M. Jones, H.S. Margolis, P.B. Whibberley, A. Wallin, M. Merimaa, P. Gill, E. Peik, Frequency comparison of \(^{171}\rm Yb^+\) ion optical clocks at ptb and npl via GPS PPP. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(7), 981–985 (2016)

    Article  Google Scholar 

  88. P. Dubé, J.E. Bernard, M. Gertsvolf, Absolute frequency measurement of the 88 Sr + clock transition using a GPS link to the SI second. Metrologia 54(3), 290 (2017)

    Article  ADS  Google Scholar 

  89. C.F.A. Baynham, R.M. Godun, J.M. Jones, S.A. King, P.B.R. Nisbet-Jones, F. Baynes, A. Rolland, P.E.G. Baird, K. Bongs, P. Gill, H.S. Margolis, Absolute frequency measurement of the optical clock transition in with an uncertainty of using a frequency link to international atomic time. J. Mod. Opt. 65(2), 221–227 (2018)

    Google Scholar 

  90. D. Kirchner, Two-way time transfer via communication satellites. Proc. IEEE 79(7), 983–990 (1991)

    Article  ADS  Google Scholar 

  91. D. Piester, A. Bauch, L. Breakiron, D. Matsakis, B. Blanzano, O. Koudelka, Time transfer with nanosecond accuracy for the realization of International atomic time. Metrologia 45(2), 185 (2008)

    Article  ADS  Google Scholar 

  92. M. Fujieda, T. Gotoh, J. Amagai, Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements. J. Phys.: Conf. Ser. 723(1), 012036 (2016)

    Google Scholar 

  93. H. Hachisu, M. Fujieda, S. Nagano, T. Gotoh, A. Nogami, T. Ido, St Falke, N. Huntemann, C. Grebing, B. Lipphardt, Ch. Lisdat, D. Piester, Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km. Opt. Lett. 39(14), 4072–4075 (2014)

    Article  ADS  Google Scholar 

  94. F. Meynadier, P. Delva, C. le Poncin-Lafitte, C. Guerlin, P. Wolf, Atomic clock ensemble in space (ACES) data analysis. Class. Quantum Grav. 35(3), 035018 (2018)

    Article  ADS  Google Scholar 

  95. L. Cacciapuoti, Ch. Salomon, Space clocks and fundamental tests: The ACES experiment. Eur. Phys. J. Spec. Top. 172(1), 57–68 (2009)

    Article  Google Scholar 

  96. Ph. Laurent, D. Massonnet, L. Cacciapuoti, C. Salomon, The ACES/PHARAO space mission. Comptes rendus de l’Académie des sciences. Physique 16(5), 540–552 (2015)

    Article  Google Scholar 

  97. P. Exertier, E. Samain, C. Courde, M. Aimar, J.M. Torre, G.D. Rovera, M. Abgrall, P. Uhrich, R. Sherwood, G. Herold, U. Schreiber, P. Guillemot, Sub-ns time transfer consistency: a direct comparison between GPS CV and T2L2. Metrologia 53(6), 1395 (2016)

    Article  ADS  Google Scholar 

  98. G.D. Rovera, M. Abgrall, C. Courde, P. Exertier, P. Fridelance, Ph. Guillemot, M. Laas-Bourez, N. Martin, E. Samain, R. Sherwood, J.-M. Torre, P. Uhrich, A direct comparison between two independently calibrated time transfer techniques: T2L2 and GPS Common-Views. J. Phys.: Conf. Ser. 723(1), 012037 (2016)

    Google Scholar 

  99. E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, P. Exertier, Time transfer by laser link (T2L2): characterization and calibration of the flight instrument. Metrologia 51(5), 503 (2014)

    Article  ADS  Google Scholar 

  100. E. Samain, P. Exertier, C. Courde, P. Fridelance, P. Guillemot, M. Laas-Bourez, J.-M. Torre, Time transfer by laser link: a complete analysis of the uncertainty budget. Metrologia 52(2), 423 (2015)

    Article  ADS  Google Scholar 

  101. P. Exertier, E. Samain, N. Martin, C. Courde, M. Laas-Bourez, C. Foussard, Ph. Guillemot, Time transfer by laser link: data analysis and validation to the ps level. Adv. Space Res. 54(11), 2371–2385 (2014)

    Article  ADS  Google Scholar 

  102. J. Kodet, M. Vacek, P. Fort, I. Prochazka, J. Blazej, Photon Counting Receiver for the Laser Time Transfer, Optical Design, and Construction, vol. 8072 (2011), pp. 80720A (International Society for Optics and Photonics, 2011)

    Google Scholar 

  103. I. Prochazka, J. Kodet, J. Blazej, Note: space qualified photon counting detector for laser time transfer with picosecond precision and stability. Rev. Sci. Instrum. 87(5), 056102 (2016)

    Article  ADS  Google Scholar 

  104. S.L. Campbell, R.B. Hutson, G.E. Marti, A. Goban, N. Darkwah Oppong, R.L. McNally, L. Sonderhouse, J.M. Robinson, W. Zhang, B.J. Bloom, J. Ye, A fermi-degenerate three-dimensional optical lattice clock. Science 358(6359), 90–94 (2017)

    Article  ADS  Google Scholar 

  105. S.B. Koller, J. Grotti, St. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, Ch. Lisdat, Transportable optical lattice clock with \(7\times 10^{-17}\) uncertainty. Phys. Rev. Lett. 118(7), 073601 (2017)

    Google Scholar 

  106. R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, S. Bize, Comparing a mercury optical lattice clock with microwave and optical frequency standards. New J. Phys. 18(11), 113002 (2016)

    Article  ADS  Google Scholar 

  107. J. Lodewyck, S. Bilicki, E. Bookjans, J.-L. Robyr, C. Shi, G. Vallet, R. Le Targat, D. Nicolodi, Y. Le Coq, J. Guéna, M. Abgrall, P. Rosenbusch, S. Bize, Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock. Metrologia 53(4), 1123 (2016)

    Article  ADS  Google Scholar 

  108. K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th Legero, T.W. Hänsch, Th Udem, R. Holzwarth, H. Schnatz, A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336(6080), 441–444 (2012)

    Article  ADS  Google Scholar 

  109. O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, G. Santarelli, Ultra-stable long distance optical frequency distribution using the Internet fiber network. Opt. Express 20(21), 23518–23526 (2012)

    Article  ADS  Google Scholar 

  110. N. Chiodo, K. Djerroud, O. Acef, A. Clairon, P. Wolf, Lasers for coherent optical satellite links with large dynamics. Appl. Opt. 52(30), 7342–7351 (2013)

    Article  ADS  Google Scholar 

  111. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C.N. Man, E. Samain, P. Wolf, Coherent optical link through the turbulent atmosphere. Opt. Lett. 35(9), 1479–1481 (2010)

    Article  ADS  Google Scholar 

  112. F.R. Giorgetta, W.C. Swann, L.C. Sinclair, E. Baumann, I. Coddington, N.R. Newbury, Optical two-way time and frequency transfer over free space. Nat. Photonics 7(6), 434–438 (2013)

    Article  ADS  Google Scholar 

  113. J.-D. Deschênes, L.C. Sinclair, F.R. Giorgetta, W.C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, N.R. Newbury, Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X 6(2), 021016 (2016)

    Google Scholar 

  114. L.C. Sinclair, F.R. Giorgetta, W.C. Swann, E. Baumann, I. Coddington, N.R. Newbury, Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer. Phys. Rev. A 89(2), 023805 (2014)

    Article  ADS  Google Scholar 

  115. L.C. Sinclair, W.C. Swann, H. Bergeron, E. Baumann, M. Cermak, I. Coddington, J.-D. Deschênes, F.R. Giorgetta, J.C. Juarez, I. Khader, K.G. Petrillo, K.T. Souza, M.L. Dennis, N.R. Newbury, Synchronization of clocks through 12 km of strongly turbulent air over a city. Appl. Phys. Lett. 109(15), 151104 (2016)

    Article  ADS  Google Scholar 

  116. C. Robert, J.-M. Conan, P. Wolf, Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links. Phys. Rev. A 93(3), 033860 (2016)

    Article  ADS  Google Scholar 

  117. L. Blanchet, C. Salomon, P. Teyssandier, P. Wolf, Relativistic theory for time and frequency transfer to order. Astron. Astrophys. 370(1), 10 (2001)

    Article  Google Scholar 

  118. C. Le Poncin-Lafitte, B. Linet, P. Teyssandier, World function and time transfer: general post-Minkowskian expansions. Class. Quantum Grav. 21(18), 4463 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. P. Teyssandier, C. Le Poncin-Lafitte, General post-Minkowskian expansion of time transfer functions. Class. Quantum Grav. 25(14), 145020 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. A. Hees, S. Bertone, C. Le Poncin-Lafitte, Frequency shift up to the 2-PM approximation, in SF2A-2012: Proceedings of the annual meeting of the French Society of Astronomy and Astrophysics (2012), pp. 145–148, arXiv:1210.2577

  121. J.L. Synge, Relativity: The General Theory, 1st edn. (North-Holland Publishing Company, Amsterdam, 1960)

    Google Scholar 

  122. J. Gers̆l, P. Delva, P. Wolf, Relativistic corrections for time and frequency transfer in optical fibres. Metrologia 52(4), 552 (2015)

    Article  ADS  Google Scholar 

  123. A. Rülke, G. Liebsch, M. Sacher, U. Schäfer, U. Schirmer, J. Ihde, Unification of European height system realizations. J. Geod. Sci. 2(4), 343–354 (2013)

    Google Scholar 

  124. G. Petit, P. Wolf, P. Delva, Atomic time, clocks, and clock comparisons in relativistic spacetime: a review, in Frontiers in Relativistic Celestial Mechanics - Volume 2: Applications and Experiments, ed. by S.M. Kopeikin. De Gruyter Studies in Mathematical Physics (De Gruyter, 2014), pp. 249–279

    Google Scholar 

  125. L. Sánchez, Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System. J. Geod. Sci. 2(4), 325–342 (2012)

    Google Scholar 

  126. M. Burs̆a, S. Kenyon, J. Kouba, Z. S̆íma, V. Vatrt, V. Vtek, M. Vojtís̆ková, The geopotential value \(W_0\) for specifying the relativistic atomic time scale and a global vertical reference system. J. Geod. 81(2), 103–110 (2006)

    Google Scholar 

  127. N. Dayoub, S.J. Edwards, P. Moore, The Gauss-Listing geopotential value \(W_0\) and its rate from altimetric mean sea level and GRACE. J. Geod. 86(9), 681–694 (2012)

    Article  ADS  Google Scholar 

  128. S. Jevrejeva, J.C. Moore, A. Grinsted, Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Chang. 80–81, 14–20 (2012)

    Article  ADS  Google Scholar 

  129. C. Voigt, H. Denker, L. Timmen, Time-variable gravity potential components for optical clock comparisons and the definition of international time scales. Metrologia 53(6), 1365 (2016)

    Article  ADS  Google Scholar 

  130. T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, H. Katori, Real-time geopotentiometry with synchronously linked optical lattice clocks. Nat. Photonics 10(10), 662–666 (2016)

    Google Scholar 

  131. P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, others, Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett. 118(22), 221102 (2017)

    Google Scholar 

  132. J. Mäkinen, J. Ihde, The permanent tide in height systems, in Observing our Changing Earth, International Association of Geodesy Symposia (Springer, Berlin, 2009), pp. 81–87

    Google Scholar 

  133. J. Ihde, J. Mäkinen, M. Sacher, Conventions for the definition and realization of a European Vertical Reference System (EVRS) – EVRS Conventions 2007. EVRS Conventions V5.1, Bundesamt für Kartographie and Geodäsie, Finnish Geodetic Institute, 2008-12-17. Technical report, 2008

    Google Scholar 

  134. H. Denker, Regional gravity field modeling: theory and practical results, in Sciences of Geodesy, vol. II, ed. by G. Xu (Springer, Berlin, 2013), pp. 185–291

    Google Scholar 

  135. Bull. Geodesique 58(3), 309–323 (1984)

    Google Scholar 

  136. W.A. Heiskanen, H. Moritz, Physical Geodesy (W.H. Freeman and Company, San Francisco, London, 1967)

    Google Scholar 

  137. W. Torge, J. Müller, Geodesy, 4th edn. (De Gruyter, Berlin, Boston, 2012)

    Google Scholar 

  138. F. Condi, C. Wunsch, Gravity field variability, the geoid, and ocean dynamics, in V Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy Symposia, vol. 127 (Springer, Berlin, 2004), pp. 285–292

    Google Scholar 

  139. H. Drewes, F. Kuglitsch, J. Adám, S. Rózsa, The Geodesist’s handbook 2016. J. Geod. 90(10), 907–1205 (2016)

    Article  ADS  Google Scholar 

  140. J. Ihde, R. Barzaghi, U. Marti, L. Sànchez, M. Sideris, H. Drewes, C. Foerste, T. Gruber, G. Liebsch, G. Pail, Report of the ad-hoc group on an international height reference system (IHRS), in Reports 2011-2015, Number 39 in IAG Travaux (2015), pp. 549–557

    Google Scholar 

  141. M. Burša, J. Kouba, M. Kumar, A. Müller, K. Raděj, S.A. True, V. Vatrt, M. Vojtíšková, Geoidal geopotential and world height system. Stud. Geophys. Geod. 43(4), 327–337 (1999)

    Article  Google Scholar 

  142. L. Sánchez, R. C̆underlk, N. Dayoub, K. Mikula, Z. Minarechová, Z. S̆íma, V. Vatrt, M. Vojtís̆ková, A conventional value for the geoid reference potential \(W_0\). J. Geod. 90(9), 815–835 (2016)

    Google Scholar 

  143. M.S. Molodenskii, V.F. Eremeev, M.I. Yurkina, Methods for Study of the External Gravitational Field and Figure of the Earth (Israel Program for Scientific Translations, Jerusalem, 1962)

    Google Scholar 

  144. N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 117(B4), B04406 (2012)

    Article  ADS  Google Scholar 

  145. T. Mayer-Gürr, N. Zehentner, B. Klinger, A. Kvas, ITSG-Grace2014: a new GRACE gravity field release computed in Graz, 2014. GRACE Science Team Meeting (GSTM), Potsdam, 29 Sept.-01 Oct. 2014

    Google Scholar 

  146. T. Mayer-Gürr, G. Team, The combined satellite gravity field model GOCO05s, 2015. EGU General Assembly 2015, Vienna (2015)

    Google Scholar 

  147. J.M. Brockmann, N. Zehentner, E. Höck, R. Pail, I. Loth, T. Mayer-Gürr, W.-D. Schuh, EGM\(\_\)TIM\(\_\)RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys. Res. Lett. 41(22), 8089–8099 (2014)

    Article  ADS  Google Scholar 

  148. D.E. Smith, R. Kolenkiewicz, P.J. Dunn, M.H. Torrence, Earth scale below a part per billion from Satellite Laser Ranging, in Geodesy Beyond 2000, International Association of Geodesy Symposia, vol. 121 (Springer, Berlin, 2000), pp. 3–12

    Chapter  Google Scholar 

  149. J.C. Ries, The scale of the terrestrial reference frame from VLBI and SLR, 2014. IERS Unified Analysis Workshop, Pasadena, CA, 27–28 June 2014

    Google Scholar 

  150. R. Forsberg, Modelling the fine-structure of the geoid: methods, data requirements and some results. Surv. Geophys. 14(4–5), 403–418 (1993)

    Article  ADS  Google Scholar 

  151. C. Jekeli, O. Error, Data requirements, and the fractal dimension of the geoid, in VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy Symposia, vol. 137 (Springer, Berlin, 2012), pp. 181–187

    Google Scholar 

  152. R. Rummel, P. Teunissen, Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull. Geodesique 62(4), 477–498 (1988)

    Article  ADS  Google Scholar 

  153. B. Heck, R. Rummel, Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data, in Sea Surface Topography and the Geoid, International Association of Geodesy Symposia, vol. 104 (Springer, New York, 1990), pp. 116–128

    Chapter  Google Scholar 

  154. J. Kelsey, D.A. Gray, Geodetic aspects concerning possible subsidence in southeastern England. Phil. Trans. R. Soc. Lond. A 272(1221), 141–149 (1972)

    Article  ADS  Google Scholar 

  155. P. Rebischung, H. Duquenne, F. Duquenne, The new French zero-order levelling network – first global results and possible consequences for UELN, 2008, EUREF Symposium, Brussels, June 18-21, 2008 (2008)

    Google Scholar 

  156. M. Véronneau, R. Duvai, J. Huang, A gravimetric geoid model as a vertical datum in Canada. Geomatica 60, 165–172 (2006)

    Google Scholar 

  157. D. Smith, M. Véronneau, D.R. Roman, J. Huang, Y. Wang, M. Sideris, Towards the unification of the vertical datums over the North American continent, 2010. IAG Comm. 1 Symposium 2010, Reference Frames for Applications in Geosciences (REFAG2010), Marne-La-Vallée, France, 4–8 Oct. 2010 (2010)

    Google Scholar 

  158. D.A. Smith, S.A. Holmes, X. Li, S. Guillaume, Y.M. Wang, B. Bürki, D.R. Roman, T.M. Damiani, Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid slope validation survey of 2011. J. Geod. 87(10–12), 885–907 (2013)

    Article  ADS  Google Scholar 

  159. Z. Altamimi, X. Collilieux, L. Métivier, ITRF2008: an improved solution of the international terrestrial reference frame. J. Geod. 85(8), 457–473 (2011)

    Article  ADS  Google Scholar 

  160. Z. Altamimi, P. Rebischung, L. Métivier, X. Collilieux, ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121, 6109–6131 (2016)

    Article  ADS  Google Scholar 

  161. M. Seitz, D. Angermann, H. Drewes, Accuracy assessment of the ITRS 2008 realization of DGFI: DTRF2008, in Reference Frames for Applications in Geosciences, International Association of Geodesy Symposia, vol. 138 (Springer, Berlin, 2013), pp. 87–93

    Google Scholar 

  162. H. Margolis, Timekeepers of the future (2014), https://www.nature.com/articles/nphys2834

  163. F. Riehle, Towards a redefinition of the second based on optical atomic clocks. Comptes Rendus Phys. 16(5), 506–515 (2015)

    Article  Google Scholar 

  164. P. Gill, Is the time right for a redefinition of the second by optical atomic clocks? J. Phys.: Conf. Ser. 723(1), 012053 (2016)

    Google Scholar 

  165. F. Riehle, Optical clock networks. Nat. Photonics 11(1), 25–31 (2017)

    Article  ADS  Google Scholar 

  166. S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, G. Vladislav, N. Huntemann, C. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, S. Uwe, C. Lisdat, A strontium lattice clock with \(3\times 10^{-17}\) inaccuracy and its frequency. New J. Phys. 16(7), 073023 (2014)

    Article  ADS  Google Scholar 

  167. H. Denker, A new European Gravimetric (Quasi)Geoid EGG2015, 2015. XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG), Earth and Environmental Sciences for Future Generations, Prague, Czech Republic, 22 June–02 July 2015 (Poster)

    Google Scholar 

  168. M. Sacher, J. Ihde, G. Liebsch, J. Mäkinen, EVRF2007 as realization of the European vertical reference system, 2008, EUREF Symposium, Brussels, Belgium, 18–21 June 2008 (2008)

    Google Scholar 

  169. D.E. Cartwright, J. Crease, A comparison of the geodetic reference levels of England and France by means of the sea surface. Proc. R. Soc. Lond. A 273(1355), 558–580 (1963)

    Article  ADS  Google Scholar 

  170. M. Greaves, R. Hipkin, C. Calvert, C. Fane, P. Rebischung, F. Duquenne, A. Harmel, A. Coulomb, H. Duquenne, Connection of British and French levelling networks – Applications to UELN, 2007, EUREF Symposium, London, June 6–9, 2007 (2007)

    Google Scholar 

  171. A. Kenyeres, M. Sacher, J. Ihde, H. Denker, U. Marti, EUVN densification action – final report. Technical report (2010), https://evrs.bkg.bund.de/SharedDocs/Downloads/EVRS/EN/Publications/EUVN-DA_FinalReport.pdf?__blob=publicationFile&v=1

  172. H. Moritz, Geodetic reference system 1980. J. Geod. 74(1), 128–133 (2000)

    Article  ADS  Google Scholar 

  173. H. Moritz, Advanced Physical Geodesy (Wichmann, Karlsruhe, 1980)

    Google Scholar 

  174. H. Denker, Hochauflösende regionale Schwerefeldbestimmung mit gravimetrischen und topographischen Daten. PhD thesis, Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 156, Hannover, 1988

    Google Scholar 

  175. H. Denker, Evaluation and improvement of the EGG97 quasigeoid model for Europe by GPS and leveling data, in Second Continental Workshop on the Geoid in Europe, Proceed., Report of Finnish Geodetic Institute, Masala, vol. 98:4, ed. by M. Vermeer, J. Ádám (1998), pp. 53–61

    Google Scholar 

  176. C. Förste, S.L. Bruinsma, O. Abrikosov, J.-M. Lemoine, J.C. Marty, F. Flechtner, G. Balmino, F. Barthelmes, R. Biancale, EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (2014)

    Google Scholar 

  177. D.A. Smith, There is no such thing as “The” EGM96 geoid: subtle points on the use of a global geopotential model. Technical report, IGeS Bulletin No. 8, International Geoid Service, Milan, Italy, 1998

    Google Scholar 

  178. S.J. Claessens, C. Hirt, Ellipsoidal topographic potential: New solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. J. Geophys. Res. Solid Earth 118(11), 5991–6002 (2013)

    Article  ADS  Google Scholar 

  179. R. Forsberg, A new covariance model for inertial gravimetry and gradiometry. J. Geophys. Res. 92(B2), 1305–1310 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  180. R. Forsberg. An overview manual for the GRAVSOFT – Geodetic Gravity Field Modelling Programs. Technical report, DNSC – Danios National Space Center, 2003

    Google Scholar 

  181. D. Coulot, P. Rebischung, A. Pollet, L. Grondin, G. Collot, Global optimization of GNSS station reference networks. GPS Solut. 19(4), 569–577 (2015)

    Article  Google Scholar 

  182. J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, X. Huang, A compact, transportable single-ion optical clock with \(7.8\times 10^{17}\) systematic uncertainty. Appl. Phys. B 123(4), 112 (2017)

    Google Scholar 

  183. M. Yasuda, T. Tanabe, T. Kobayashi, D. Akamatsu, T. Sato, A. Hatakeyama, Laser-controlled cold ytterbium atom source for transportable optical clocks. J. Phys. Soc. Jpn. 86(12), 125001 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jérôme Lodewyck (SYRTE/Paris Observatory) for providing Fig. 1, and Martina Sacher (Bundesamt für Kartographie und Geodäsie, BKG, Leipzig, Germany) for providing information on the EVRF2007 heights and uncertainties, the associated height transformations, and a new UELN adjustment in progress. This research was supported by the European Metrology Research Programme (EMRP) within the Joint Research Project “International Timescales with Optical Clocks” (SIB55 ITOC), as well as the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Centre 1128 “Relativistic Geodesy and Gravimetry with Quantum Sensors (geo-Q)”, project C04. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. We gratefully acknowledge financial support from Labex FIRST-TF and ERC AdOC (Grant No. 617553).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pacome Delva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delva, P., Denker, H., Lion, G. (2019). Chronometric Geodesy: Methods and Applications. In: Puetzfeld, D., Lämmerzahl, C. (eds) Relativistic Geodesy. Fundamental Theories of Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_2

Download citation

Publish with us

Policies and ethics