Skip to main content
Log in

On a relativistic geodesy

  • Published:
Bulletin géodésique Aims and scope Submit manuscript

Abstract

Theoretical formulas for relativistic estimation of geopotential differences are given. The relativistic geoid is defined.

A technique for measuring potential differences with high precision clocks (masers or equivalent) is described. The method can operate over arbitrary terrestrial distances. Two clocks are used. The drift between the clocks is estimated by using closed loops. The clocks are used in an operational mode during the whole measuring interval. No satellite links are necessary but VLBI, GPS and ANIK-links can be used in combination with the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E.A. BJERHAMMAR: Theory of errors and generalized matrix inverses. Elsevier, Amsterdam, 1973.

    Google Scholar 

  • E.A. BJERHAMMAR: Discrete approaches to the solution of the boundary value problem in physical geodesy. Boll. de geodesia e sci. affine 1975.

  • E.A. BJERHAMMAR, L. SVENSSON: The geodetic boundary value problem for a fixed boundary surface—a satellite approach. Bull. Géod. 1983.

  • J.J. BOLLINGER, W. WAYNE, D.J. WINELAND. Laser cooled9Be+ accurate clock. National Bur. of Stand. Boulder Colorado 1983.

    Google Scholar 

  • J. CAMPBELL, F.J. LOHMAR: On the computation of ionospheric path for VLBI from satellite Doppler observations. NOAA Techn. Report Nos. 95 NGS 24. 1982.

  • S.C. CUTLER, R.P. GIFFARD, M.D. McGURIE: A trapped Mercury ion frequency standard. NASA Conf. Publ. 2220, 1981.

  • G.J. DICK, D.M. STRAYER: Development of the superconducting cavity maser as a stable frequency source. Proc. 38th Frequency control symp. Philadelphia 1984.

  • H.G. DEHMELT: Mono-ion oscillators as potential ultimate laser frequency standards. IEEE Trans. Instrum. Mea. IM-31. 1982.

  • A. EINSTEIN. Hamiltonache Prinzip und allgemeine Relativitätstheorie. Sitzler (ed.). Preuss. Akad. Wiss, Berlin, 1916.

    Google Scholar 

  • C.C. GOAD, B.W. REMONDI: Initial relative posititoning results using the global positioning system. IUGG, Hamburg, 1983.

    Google Scholar 

  • C.C. HAFELE, R.E. KEATING: Around-the-world atomic clocks: observed relativistic time gains. Science 177, 166, 168. 1972.

    Article  Google Scholar 

  • H. HELLWIG, M. LEVINE: Cecium clocks deployed in the global positioning system. Design and performance data. Proc. 38th Annual Frequency Control Symp. Philadelphia 1984.

  • M. HOTINE: Mathematical geodesy. US Dep. of Commerce. ESSA Washington, D.C. 1969.

  • L. HÖRMANDER: The boundary value problem of physical geodesy. Royal Institute of Technology, Geodesy, Stockholm, 1975.

    Google Scholar 

  • W.M. ITANO, D.J. WINELAND, H. HEMMATI, J.C. BERGQUIST J.J. BOLLINGER: Time and frequency standards based on charged particle trapping. IEEE. Trans. on Nuclear Science. Vol. NS-30. No. 1983.

  • M. JARDINO, M. DESAINTUSCIEN, R. BARILLET, J. VIENNET, P. PETIT, C. AUDION: Frequency stability of mercury ion frequency standard. Applied Phys. 24, 1981.

  • R.P. KERR: Gravitational field of a spinning mass as an example of algebraically special metric. Phys. Rev. Letters. Vol. 11, 1963, pp. 237–238.

    Article  Google Scholar 

  • C.W. KILMEISTER: General theory of relativity. Pergamon press, 1973.

  • S.H. KNOWLES, W. B. WALTMAN, E. O. HULBURT, W.H. CANNON, D.D. DAVIDSON, W. PATRASCHENKO, J.L. YEN, J. POPELAR, J. GALT: Development of a phasecoherent local oscillatory for a geodetic VLBI network. NOAA Tech. Report Nos. 95 NGS 24, 1982.

  • L.D. LANDAU, E.M. LIFSHITZ: The classical theory of fields. Pergamon press, 1974.

  • E.M. MATTISON, R.F.C. VESSOT: Techniques used in SAO hydrogen masers for increased frequency stability and reliability. Smithsonian astrophysical observatory. Cambridge, Mass, 1983. Proceedings of symposium No. 5: Geodetic applications of Radio Interferometry. IAG. Tokyo, Japan, 1983.

  • C.W. MISNER, K.S. THORNE, J.A. WHELLER: Gravitation. Freeman & Co., San Francisco, 1973.

    Google Scholar 

  • M.S. MOLODENSKY: The external gravitational field and the figure of the earth (Russian), Publ. Acad. Sci., Geogr. and Geophys. Series, Vol. 12, No. 3, Moscow, 1948.

  • C.A. MURRAY: Vectorial astrometry, Adam Hilger, Ltd. Bristol. 1983.

    Google Scholar 

  • P. PETIT, M. DESAINTFUSCIEN, C. AUDOIN: Temperature dependence of the hydrogen maser wall shift in the temperature range 295–395 K. Metrologia 16, 7–14, 1980.

    Google Scholar 

  • H.E. PETERS: Design and performance of new hydrogen masers using cavity switching servos. Proc. 38th Annual Frequency Control Symposium, Philadelphia, 1984.

  • R.V. POUND, G.A. REBKA: Gravitational red-shift in nuclear resonance. Phys. Review Letters 3, 439, 1959. See also Phys. Review Letter 4, 337 (1960).

    Article  Google Scholar 

  • R.V. POUND, G.A. REBKA: Apparent weight of photons. Phys. Rev. Letters 4. 337–341, 1960.

    Article  Google Scholar 

  • R.V. POUND, J.L. SNIDER: Effect of gravity on gamma radiation. Phys. Review. Vol. 140, No. 3B, 1965.

  • R.H. RAPP: Concepts of vertical datums. Dep. of geodetic science and surveying. The Ohio State University. Columbus, Ohio, 1984.

    Google Scholar 

  • V. REINHARDT, J. IINGOLD, T. STALDER, M. SAIFI, P. DACHEL: Test Report for Oscilloquartz EFCS-2 Hydrogen Maser. Bendix Field Engineering Corporation, Columbia, Maryland, 1983.

    Google Scholar 

  • D.S. ROBERTSON, W.E. CARTER: Relativistic deflection of radio signals in the solar gravitational field measured with Very Long Baseline Interferometry. (in press). National Geodetic Survey, NOAA. Rockville, Md. 1984.

    Google Scholar 

  • L.J. RUEGER: Characteristics of the NASA research hydrogen maser. Journal of the Institution of Electronics and Telecommunication Engineers, Vol. 27, No. 11, 1981.

  • S.R. STEIN: Application of superconductivity to precision oscillators. Proc. of the 29 annual symposium of frequency control. pp. 321–327, 1975.

  • S.R. STEIN, J.P. TURNEAURE: Superconductioning resonators: High stability oscillators and applications to fundamental physics and metrology. AIP Conf. Proc. No. 44. New York. American Insitute of Physics, 1975.

  • L. SVENSSON: Solution of the Altimetry-gravimetry problem. Bull. Géodésique, 1983.

  • K. SCHWARZSCHILD: Über das Gravitationsfeld eines Massenpunkt nach der Einsteinschen Theorie. Sitzungberichte des Deutschen Akademie der Wiss. Berlin, 1916.

  • J.P. TURNEAURE, C.M. WILL, B.F. FARELL, E.M. MATTISON, R.F. VESSOT: Test of the principle of equivalence by a null gravitational red-shift experiment, Physical Review D. Vol. 27 Numb. 8, 1983.

  • M. VERMEER: Chronometric levelling. Reports from the Finnish Geodetic Institute, Helsinki, 1983.

    Google Scholar 

  • R.F.C. VESSOT: Frequency and time standards. In Astrophysics. Vol. 12. Ed. M.L. Melks. Academic Press, New York, 1976.

    Google Scholar 

  • R.F.C. VESSOT: Relativity experiments with clocks. Radio Science. Vol. 14, no. 4, pp. 629–647, 1979.

    Article  Google Scholar 

  • R.F.C. VESSOT: Gravitation and relativity experiments using atomic clocks. Journal de Physique. Colloque C8, suppl. au No. 12, Tome 42, 1981.

  • S. URABE, Y. OHTA, T. MORIKAWA, Y. SABURI: Proc. 38th Annual Frequency Control Symposium, Philadelphia, 1984.

  • F.L. WALLS, K.B. PERSSON: A new miniaturized passive hydrogen maser. Proc. 38th Annual Frequency Control Symposium, Philadelphia, 1984.

  • Wayne, M. ITANO, D.J. WINELAND, H. HEMMATI, J.C. BERGQUIST, J.J. BOLLINGER: Time and frequency standards based on charged particel trapping. IEEE Transaction on Nuclear Science, Vol. No. 30, No. 2, April 1983.

  • D.J. WINELAND, W.M. ITANO, J.C. BERGQUIST, F.L. WALLS: Proposed stored201Hg+ ion frequency standards. Proc. 35 Ann. Freq. Control Symposium, 1981.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerhammar, A. On a relativistic geodesy. Bull. Geodesique 59, 207–220 (1985). https://doi.org/10.1007/BF02520327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02520327

Keywords

Navigation