Skip to main content
Log in

Geodesy and relativity

  • Review Paper
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Relativity, or gravitational physics, has widely entered geodetic modelling and parameter determination. This concerns, first of all, the fundamental reference systems used. The Barycentric Celestial Reference System (BCRS) has to be distinguished carefully from the Geocentric Celestial Reference System (GCRS), which is the basic theoretical system for geodetic modelling with a direct link to the International Terrestrial Reference System (ITRS), simply given by a rotation matrix. The relation to the International Celestial Reference System (ICRS) is discussed, as well as various properties and relevance of these systems. Then the representation of the gravitational field is discussed when relativity comes into play. Presently, the so-called post-Newtonian approximation to GRT (general relativity theory) including relativistic effects to lowest order is sufficient for practically all geodetic applications. At the present level of accuracy, space-geodetic techniques like VLBI (Very Long Baseline Interferometry), GPS (Global Positioning System) and SLR/LLR (Satellite/Lunar Laser Ranging) have to be modelled and analysed in the context of a post-Newtonian formalism. In fact, all reference and time frames involved, satellite and planetary orbits, signal propagation and the various observables (frequencies, pulse travel times, phase and travel-time differences) are treated within relativity. This paper reviews to what extent the space-geodetic techniques are affected by such a relativistic treatment and where—vice versa—relativistic parameters can be determined by the analysis of geodetic measurements. At the end, we give a brief outlook on how new or improved measurement techniques (e.g., optical clocks, Galileo) may further push relativistic parameter determination and allow for refined geodetic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby N (2003) Relativity in the global positioning system, Living Rev. Relativity. http://relativity.livingreviews.org/Articles/lrr-2003-1/

  • Bertotti B, Iess L, Tortora P (2003) A test of general relativity using radio links with the Cassini spacecraft. Nature 425:374

    Article  Google Scholar 

  • Beutler G, Drewes H, Verdun A (2004a) The integrated global geodetic observing system (IGGOS) viewed from the perspective of history. J Geodynam 40:414

    Article  Google Scholar 

  • Beutler G, Drewes H, Verdun A (2004b) The new structure of the international Association of Geodesy (IAG) viewed from the perspective of history. J Geodesy 77:566

    Article  Google Scholar 

  • Bizouard C, Schastok J, Soffel M, Souchay J (1992) Étude de la Rotation de la Terre dans le Carde de la Relativité Générale: Première Approche. In: Capitaine N (ed) Proc of Les Journées 1992, Systèmes de référence spatio-temporels. Paris Observatory vol 76

  • Blanchet L, Damour T (1989) Post-Newtonian generation of gravitational waves. Ann Inst H Poincaré 50:377

    Google Scholar 

  • Bjerhammar A (1985) On a relativistic geodesy. Bull Geod 59:207

    Article  Google Scholar 

  • Bretagnon P, Francou G (1988) Astron Astrophys 202:309

    Google Scholar 

  • Ciufolini I, Pavlis EC (2004) A confirmation of the general relativistic prediction of the Lense–Thirring effect Nature 431:958

    Google Scholar 

  • Counselman CC, III et al (1974) Solar gravitational deflection of radio waves measured by very-long-baseline interferometry. Phys Rev Lett 33:1621

    Article  Google Scholar 

  • Damour T, Soffel M, Xu C (1991) General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys Rev D 43:3273

    Article  Google Scholar 

  • Damour T, Soffel M, Xu C (1992) General-relativistic celestial mechanics II. Translational equations of motion. Phys Rev D 45:1017

    Google Scholar 

  • Damour T, Soffel M, Xu C (1993) General-relativistic celestial mechanics III. Rotational equations of motion. Phys Rev D 47:3124

    Google Scholar 

  • Damour T, Soffel M, Xu C (1994) General-relativistic celestial mechanics IV. Theory of satellite motion. Phys Rev D 49:618

    Google Scholar 

  • Einstein, A. (1905) Zur Elektrodynamik bewegter Körper, Ann Phys 17:891

    Google Scholar 

  • Eubanks TM (ed) (1991) Proceedings of the US Naval Observatory Workshop on Relativistic Models for Use in Space Geodesy. US Naval Observatory, Washington, DC

    Google Scholar 

  • Eubanks TM, Matsakis DN, Martin JO, Archinal BA, McCarthy DD, Klioner SA, Shapiro S, Shapiro I.I (1997) Advances in solar system tests of gravity. In: Proc of The Joint APS/AAPT Joint Meeting, April 18–21, 1997, American Physical Society, Washington DC, abstract #K11.05. http://flux.aps.org/meetings/ YR97/BAPSAPR97/abs/S1280005.html.

  • Eubanks TM, Martin JO, Archinal BA, Josties FJ, Klioner SA, Shapiro S, Shapiro I.I (1998) Advances in solar system tests of gravity. Preprint of the US Naval Observatory, available upon request

  • Everitt CWF (1974) The Gyroscope Experiment I. General description and Analysis of Gyroscope Performance. In: Bertotti B (ed) Proc Int School Phys ‘Enrico Fermi’ Course LVI. New Academic Press, New York, p 331

    Google Scholar 

  • Everitt CWF et al (2001) Gravity probe B: countdown to launch. In: Lämmerzahl C, Everitt CWF, Hehl F (eds) Gyros, clocks, interferometers: testing relativistic gravity in space. Springer, Berlin, p 52

    Chapter  Google Scholar 

  • Fairhead L, Bretagnon P (1990) An analytical formula for the time transformation TB-TT. Astron Astrophys 229:240

    Google Scholar 

  • Fomalont EB, Sramek RA (1976) Measurements of the solar gravitational deflection of radio waves in agreement with general relativity. Phys Rev Lett 36:1475

    Article  Google Scholar 

  • Fukushima T (1994) Lunar VLBI observation model. Astron Astrophys 291:320

    Google Scholar 

  • Fukushima T (1995) Time Ephemeris. Astron Astrophys 294:895

    Google Scholar 

  • Groten E (2000) Report of Special Commission 3 of IAG. In: Johnston KJ, McCarhy DD, Luzum BJ, Kaplan GH (eds) Proc IAU Colloquium 180, “Towards Models and Constants for Sub-Microarcsecond Astrometry”. US Naval Observatory, Washington DC, p 337

    Google Scholar 

  • Gwinn CR, Eubanks TM, Pyne T, Birkinshaw M, Matsakis DN (1997) Quasar proper motions and low-frequency gravitational waves. Astrophys J 485:87

    Article  Google Scholar 

  • Hall JL, Hänsch TW (2005) History of optical comb development. In: Ye J, Cundiff ST (eds) Femtosecond optical frequency comb: principle, operation, and applications. Springer Science and Business Media, pp 1–11

  • Harada W, Fukushima T (2003) Harmonic decomposition of time ephemeris TE405. Astron J 126:2557

    Article  Google Scholar 

  • Hirayama T, Kinoshita H, Fujimoto M-K, Fukushima T (1987) Analytical expression of TDBTDT 0. In: Proc of the IAG Symposia. IUGG General Assembly, Vancouver, vol 1, p 91

  • IAU (2001) IAU Inf. Bull, No 88, 29 (erratum No 89, 4, 2002)

  • IAU (2006) Resolutions of the 26th General Assembly, Prague. http://www.iau.org

  • Iorio L (2005) The new earth gravity models and the measurement of the Lense-Thirring effect. In: Môrio Novello, Santiago Perez Bergliaffa, Remo Ruffini (eds) The Tenth Marcel Grossmann Meeting. Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, Brazil, 20–26 July 2003. World Scientific Publishing, Singapore, p 1011

  • Irwin AW, Fukushima T (1999) A numerical time ephemeris of the Earth. Astron Astrophys 348:642

    Google Scholar 

  • Klioner SA (1991) General Relativistic Model of VLBI Observables, In: Carter WE (ed) Proceedings of AGU Chapman conference on geodetic VLBI: monitoring global change. NOAA Technical Report NOS 137 NGS 49, American Geophysical Union, Washington DC, p 188

  • Klioner S (1996) Angular velocity of rotation of extended bodies in general relativity. In: Ferraz-Mello S, Morando B, Arlot J-E (eds) Dynamics, ephemerides, and astrometry of the solar system Proceedings of the 172nd Symposium of the IAU. Kluwer, Dordrecht, p 309

    Google Scholar 

  • Klioner SA, Soffel M, Xu Ch, Wu X (2001) Earth’s rotation in the framework of general relativity: rigid multipole moments. In: Capitaine N (ed) Proc of Les Journées 2001, Systèmes de référence spatio-temporels. Paris Observatory, Paris, p 232

  • Komar A (1959) Covariant conservation laws in general relativity. Phys Rev 113:934

    Article  Google Scholar 

  • Kopeikin SM (1991) Relativistic Manifestations of gravitational fields in gravimetry and geodesy. Manuscripta Geodaetica 16:301

    Google Scholar 

  • Kopeikin S, Schäfer G, Polnarev A, Vlasov I (2006) The orbital motion of Sun and a new test of general relativity using radio links with the Cassini spacecraft. Class Quant Gravity. (in print). gr-qc/0604060

  • Kouba J (2004) Improved relativistic transformations in GPS. GPS Solut 8:170

    Article  Google Scholar 

  • Lebach DE et al. (1995) Measurement of the Solar Gravitational Deflection of Radio waves using very-long-baseline interferometry. Phys Rev Lett 75:1439

    Article  Google Scholar 

  • Lemonde P et al (2001) In: Luiten AN (ed) Frequency measurement and control. Springer, Berlin, p 131

  • McCarthy DD, Petit G (2004) IERS Conventions (2003), IERS Technical Note No 32, BKG, Frankfurt. electronic version http://www. iers.org/iers/products/conv/

  • Lense J, Thirring H (1918) Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys Z 19:156; Translated and discussed by Mashhoon B, Hehl F, Theiss D (1984) On the gravitational effects of rotating Masses: The Thirring–Lense papers. General Relat Gravitat 16(8):711

  • Moyer T (1981) Transformation from proper time on earth to coordinate time in solar system barycentric space–time frame of reference. Celest Mech 23:33, 57

    Google Scholar 

  • Müller J (1991) Analyse von Lasermessungen zum Mond im Rahmen eine Post-Newtonschen Theorie. PhD thesis, Veröffentlichung der Deutschen Geodätischen Kommission, Reihe C, Nr.383, München

  • Müller J (2000) FESG/TUM, report about the LLR activities. In: Pearlman M, Taggart L (eds) ILRS annual report 1999, p 204

  • Müller J (2001) FESG/TUM, Report about the LLR Activities. In: Pearlman M, Torrence M, Taggart L (eds) ILRS annual report 2000, pp 7-35/36

  • Müller J, Nordtvedt K (1998) Lunar laser ranging and the equivalence principle signal. Phys Rev D 58:062001

    Article  Google Scholar 

  • Müller J, Nordtvedt K, Vokrouhlický D (1996) Improved constraint on the α1 PPN parameter from lunar motion. Physical Review D 54:R5927

    Article  Google Scholar 

  • Müller J, Tesmer V (2002) Investigation of Tidal Effects in Lunar Laser Ranging. J Geodesy 76:232

    Google Scholar 

  • Müller J, Williams JG, Turyshev SG, Shelus P (2006a) Potential capabilities of lunar laser ranging for geodesy and relativity, In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia 130. Springer, p 903

  • Müller J, Williams JG, Turyshev SG (2006b) Lunar Laser Ranging Contributions to Relativity and Geodesy. In: Dittus H, Lämmerzahl C, Turyshev S (eds) Proceedings of the Conference on Lasers, Clocks, and Drag-free, ZARM, Bremen, 2005. Springer, Lecture Notes in Physics, 357

  • Müller J, Biskupek L, Oberst J, Schreiber U (2007) Contribution of lunar laser ranging to realise geodetic reference systems. In: Proceedings of the GRF2006 meeting, Munich, 9–13 October 2006 (in review)

  • Petit G (2003) The new IAU’2000 conventions for coordinate times and time transformations. In: Capitaine N (ed) Proc of Les Journées 2001, Systèmes de référence spatio-temporels. Paris Observatory, Paris, p 163

    Google Scholar 

  • Ries JC, Huang C, Watkins MM, Tapley BD (1991) Orbit determination in the relativistic geocentric reference frame. J Astronaut Sci 39(2):173

    Google Scholar 

  • Ries JC, Eanes RJ, Tapley BD (2003) Lense–Thirring precession determination from laser ranging to artificial satellites. In: Ruffini R, Sigismondi C (eds) Nonlinear Gravitodynamics. The Lense-Thirring Effect. World Scientific, Singapore, p 201

    Google Scholar 

  • Robertson DS, Carter WE, Dillinger WH (1991) New measurement of solar gravitational deflection of radio signals using VLBI. Nature 349:768

    Article  Google Scholar 

  • Rothacher M, private communication 2006

  • Seeber G (2003) Satellite Geodesy, de Gruyter, 2nd edn. Berlin/New York

  • Seielstad GA, Sramek RA, Weiler KW (1970) Measurement of the deflection of 9.602-GHz radiation from 3C279 in the solar gravitational field. Phys Rev Lett 24:1373

    Article  Google Scholar 

  • Soffel M, Herold H, Ruder H, Schneider M (1988) Relativistic theory of gravimetric measurements and definition of the geoid. Manuscripta Geodaetica 13:143

    Google Scholar 

  • Soffel M, Müller J, Wu X, Xu C (1991) Astron J 101:2306

    Article  Google Scholar 

  • Soffel M, Klioner SA (2004) Relativity in the problems of Earth rotation and astronomical reference systems: status and prospects. Fundamental astronomy: new concepts and models for high accuracy observations. In: Capitaine N (ed) Proc. of Les Journées 2004, Systèmes de référence spatio-temporels. Paris Observatory, Paris, p 191

    Google Scholar 

  • Soffel M, Klioner SA, Petit G et al (2003) The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron J 126:2687

    Article  Google Scholar 

  • Standish EM (1998a) JPL planetary and lunar ephemerides, DE405/LE405 (Interoffice Memo. 312F-98-048) (JPL, Pasadena)

  • Standish EM (1998b) Time scales in the JPL and CfA ephemerides. Astron Astrophys 336:381

    Google Scholar 

  • Udem Th, Holzwarth R, Hänsch TW (2002) Nature 416:233

    Article  Google Scholar 

  • Weinberg S (1972) Gravitation and cosmology. Wiley, New York

    Google Scholar 

  • Weyers S, Hübner U, Schröder R, Tamm C, Bauch A (2001) Metrologia 38:343

    Article  Google Scholar 

  • Will CM (1993) Theory and experiment in gravitational physics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Williams JG, Newhall XX, Dickey JO (1996) Relativity parameters determined from lunar laser ranging. Phys Rev D 53:6730

    Article  Google Scholar 

  • Williams JG, Turyshev SG, Boggs DH (2004a) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93:261101

    Article  Google Scholar 

  • Williams JG, Turyshev SG, Murphy Jr TW (2004b) Improving LLR Tests of gravitational theory. (Fundamental physics meeting, Oxnard, CA, April 2003). Int J Mod Phy D 13:567

    Article  Google Scholar 

  • Williams, J.G., Turyshev, S.G. and Boggs, D. H. (2005) Lunar laser ranging tests of the equivalence principle with the Earth and Moon. In: Laemmerzahl C, Everitt CWF, Ruffini R (eds) proceedings of Testing the equivalence principle on ground and in space. Pescara, Italy, September 20–23, 2004. Springer, Heidelberg Lecture Notes in Physics

  • Xu C, Wu X, Soffel M (2001) General-relativistic theory of elastic deformable astronomical bodies. Phys Rev D 63:043002 (Erratum: Phys Rev D 63:109901)

    Google Scholar 

  • Xu C, Wu X, Soffel M, Klioner S (2003) General-relativistic perturbation equations for the dynamics of elastic deformable astronomical bodies expanded in terms of generalized spherical harmonics. Phys Rev D 68:064009

    Article  Google Scholar 

  • Xu C, Wu X, Soffel M (2005) General-relativistic perturbation equations for the dynamics of elastic deformable astronomical bodies expanded in terms of generalized spherical harmonics. Phys Rev D 71:024030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, J., Soffel, M. & Klioner, S.A. Geodesy and relativity. J Geod 82, 133–145 (2008). https://doi.org/10.1007/s00190-007-0168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0168-7

Keywords

Navigation