Skip to main content
Log in

Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

(R)-ethyl-3-hydroxyglutarate with highly optical purity (≥99%) can be used as a novel precursor for synthesis of chiral side chain of rosuvastatin. In this study, a novel synthesis route of (R)-ethyl-3-hydroxyglutarate by whole microorganism cells from racemic ethyl 4-cyano-3-hydroxybutyate was created. A strain ZJB-0910 capable of transforming racemic β-hydroxy aliphatic nitrile was isolated by employing a screening method based on a colorimetric reaction of Co2+ ion with ammonia, and identified as Rhodococcus erythropolis based on its morphology, physiological tests, Biolog, and the 16S rDNA sequence. After cultivation in a sterilized medium with composition of 20 g glucose, 5 g yeast extract, 0.5 g KH2PO4, 0.5 g K2HPO4, 0.2 g MgSO4·7H2O per liter at 30°C and 150 rpm for 48 h, the whole cells of R. erythropolis ZJB-0910 were prepared as a catalyst in (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate for synthesis of (R)-ethyl-3-hydroxyglutarate, without bearing hydrolase activity for the ester bond of ethyl 4-cyano-3-hydroxybutyate. Under the optimized biotransformation conditions of pH 7.5, 30°C, and 20 mM substrate concentration, (R)-ethyl-3-hydroxyglutarate with 46.2% yield (ee > 99%) was afforded, and its chemical structure was determined by ESI-MS, NMR, and IR. The apparent Michaelis constant K m and maximum rate V max for this biocatalytic reaction were 0.01 M and 85.6 μmol min−1 g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banerjee A, Kaul P, Sharma R, Banerjee UC (2003a) A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators. J Biomol Screen 8:559–565

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2003b) A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnol Appl Biochem 37:289–293

    Article  CAS  Google Scholar 

  • Bergeron S, Chaplin DA, Edwards JH, Ellis BSW, Hill CL, Holt-Tiffin K, Knight JR, Mahoney T, Osborne AP, Ruecroft G (2006) Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: Preparation of a statin side-chain intermediate. Org Process Res Dev 10:661–665

    Article  CAS  Google Scholar 

  • Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolution of enantiomers. J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

  • Chen J, Zheng RC, Zheng YG, Shen YC (2009) Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Eng Biotechnol 113:33–77

    CAS  Google Scholar 

  • Chmura A, Shapovalova AA, van Pelt S, van Rantwijk F, Tourova TP, Muyzer G, Sorokin DYu (2008) Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils. Appl Microbiol Biotechnol 81:371–378

    Article  CAS  Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. P Natl Acad Sci USA 86:2172–5

    Article  CAS  Google Scholar 

  • Cohen SG, Khedouri E (1961) Requirement for stereospecificity in hydrolysis by α-chymotrypsin. IV. The hydroxyl substituent. Absolute configurations. J Am Chem Soc 83:4228–4233

    Article  CAS  Google Scholar 

  • Davoodi-Dehaghani F, Vosoughi M, Ziaee AA (2010) Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis stratin. Bioresour Technol 101:1102–1105

    Article  CAS  Google Scholar 

  • DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ (2003) Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J Am Chem Soc 125:11476–11477

    Article  CAS  Google Scholar 

  • Dong HP, Zheng YG (2010) Quantitative analysis and separation of chiral (S)-ethyl 3-hydroxyglutarate in bioconversion mixtures by LC and TLC. Chromatographia 71:85–89

    Article  CAS  Google Scholar 

  • Frederich MA, Roger B, Robert EK, David DM, Seidman JG, John AS, Kevin S (1999) Short protocols in molecular biology, 4th edn. John Wiley & Sons, pp 2-12. ISBN: 0471250929

  • Gopalan AS, Sih CJ (1984) Bifunctional chiral synthons via biochemical methods. 5. Preparation of (S)-ethyl hydrogen-3-hydroxyglutarate, key intermediate to (R)-4-amino-3-hydroxybutyric acid and L-carnitine. Tetrahedron Lett 25:5235–5238

    Article  CAS  Google Scholar 

  • Greenberg WA, Varvak A, Hanson SR, Wong K, Huang HJ, Chen P, Burk MJ (2003) Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. P Natl Acad Sci USA 101:5788–5793

    Article  Google Scholar 

  • Hu JG, Wang YJ, Zheng YG, Shen YC (2007) Isolation of glycolonitrile-hydrolyzing micro- organism based on colorimetric reaction. Enzyme Microb Technol 41:244–249

    Article  CAS  Google Scholar 

  • Jacobsen EE, Hoff BH, Moen AR, Anthonsen T (2003) Enantioselective enzymatic preparation of chiral glutaric monocarboxylic acids and amides. J Mol Catal B Enzym 21:55–58

    Article  CAS  Google Scholar 

  • Jin SJ, Zheng RC, Zheng YG, Shen YC (2008) R-enantioselective hydrolysis of 2, 2-dimethylcyclopropanecarboxamide by amidase from a newly isolated strain Brevibacterium epidermidis ZJB-07021. J Appl Microbiol 105:1150–1157

    Article  CAS  Google Scholar 

  • Kim JS, Tiwari MK, Moon HJ, Jeya M, Ramu T, Oh DK, Kim IW, Lee JK (2009) Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5. Appl Microbiol Biotechnol 83:273–283

    Article  CAS  Google Scholar 

  • Kinfe HH, Frederick VC-J, Bode ML, Mathiba K, Steenkamp PA, Brady D (2009) Enantioselective hydrolysis of β-hydroxy nitriles using the whole cell biocatalyst Rhodococcus rhodochrous ATCC BAA-870. J Mol Catal B Enzym 59:231–236

    Article  CAS  Google Scholar 

  • Kubac D, Cejkova A, Masak J, Jirku V, Lemaire M, Gallienne E, Bolte J, Stloukal R, Martinkova L (2006) Biotransformation of nitriles by Rhodococcus equi A4 immobilized in Lentikats. J Mol Catal B Enzym 39:59–61

    Article  CAS  Google Scholar 

  • Lee SH, Park OJ (2009) Use and production of chiral 3-hydroxy-δ-butyrolactones and structurally related chemicals. Appl Microbiol Biotechnol 84:817–828

    Article  CAS  Google Scholar 

  • Liljeblad A, Kallinen A, Kanerva LT (2009) Biocatalysis in the preparation of the statin side chain. Current Organic Synthesis 6:362–379

    Article  CAS  Google Scholar 

  • Liu ZQ, Sun ZH (2004) Cloning and expression of D-lactonohydrolase cDNA from Fusarium moniliforme in Saccharomyces cerevisiae. Biotechnol Lett 26:1861–1865

    Article  CAS  Google Scholar 

  • Liu YY, Xu JH, Wu HY, Shen D (2004) Integration of purification with immobilization of Candida rugosa lipase for kinetic resolution of racemic ketoprofen. J Biotechnol 110:209–217

    Article  CAS  Google Scholar 

  • Liu ZQ, Sun ZH, Leng Y (2006) Directed evolution and characterization of a novel d-pantonohydrolase from Fusarium moniliforme. J Agric Food Chem 54(16):5823–30

    Article  CAS  Google Scholar 

  • Liu ZQ, Li Y, Ping LF, Xu YY, Cui FJ, Xue YP, Zheng YG (2007) Isolation and identification of a novel Rhodococcus sp ML-0004 producing epoxide hydrolase and optimization of enzyme production. Process Biochem 42(5):889–94

    Article  CAS  Google Scholar 

  • Liu ZQ, Zhang JF, Zheng YG, Shen YC (2008) Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation. J Appl Microbiol 104:861–872

    Article  CAS  Google Scholar 

  • Meseguer-Lloret S, Verdu-Andres J, Molins-Legua C, Campins-Falco P (2005) Determination of ammonia and primary amine compounds and Kjeldahl nitrogen in water samples with a modified Roth's fluorimetric method. Talanta 65:869–875

    Article  Google Scholar 

  • Moen AR, Hoff BH, Lars K, Anthonsen T, Jacobsen EE (2004) Absolute configurations of monoesters produced by enzyme catalyzed hydrolysis of diethyl 3-hydroxyglutarate. Tetrahedron Asymmetr 15:1551–1554

    Article  CAS  Google Scholar 

  • Müller M (2005) Chemoenzymatic synthesis of building blocks for statin side chains. Angew Chem Int Ed 44:362–365

    Article  Google Scholar 

  • Öhrlein R, Baisch G (2003) Chemo-enzymatic approach to statin side-chain building blocks. Adv Synth Catal 345:713–715

    Article  Google Scholar 

  • Tsutamoto T, Yamaji M, Kawahara C, Nishiyama K, Fujii M, Yamamoto T, Horie M (2009) Effect of simvastatin vs. rosuvastatin on adiponectin and haemoglobin A1c levels in patients with non-ischaemic chronic heart failure. Eur J Heart Fail 11:1195–1201

    Article  CAS  Google Scholar 

  • Van Lingen HL, Van de Mortel JKW, Hekking KFW, Van Delft FL (2003) An efficient synthesis of 1-naphthylbis (oxazoline) and exploration of the scope in asymmetric catalysis. Eur J Org Chem 317-324

  • Wang MX (2005) Enantioselective biotransformations of nitriles in organic synthesis. Top Catal 35:117–130

    Article  Google Scholar 

  • Wang YS, Xu JM, Zheng RC, Zheng YG, Shen YC (2008) Improvement of amidase production by a newly isolated Delftia tsuruhatensis ZJB-05174 through optimization of culture medium. J Microbiol Biotechnol 18:1932–1937

    CAS  Google Scholar 

  • Wolf LB, Sonke T, Tjen KCMF, Kaptein B (2001) A biocatalytic route to enantiomerically pure unsaturated a-H-a-amino acids. Adv Synth Catal 343:662–674

    Article  CAS  Google Scholar 

  • Wu ZL, Li ZY (2003) Biocatalytic asymmetric hydrolysis of (±)-β-hydroxy nitriles by Rhodococcus sp. CGMCC 0497. J Mol Catal B Enzym 22:105–112

    Article  CAS  Google Scholar 

  • Yazbeck DR, Durao PJ, Xie ZY, Tao JH (2006) A metal ion-based method for the screening of nitrilases. J Mol Catal B Enzym 39:156–159

    Article  CAS  Google Scholar 

  • Yokoyama M, Imai N, Sugai T, Ohta H (1996) Preparation of both enantiomers of methyl 3-benzoyloxypentanoate by enzyme-catalysed hydrolysis of corresponding racemic nitrile and amide. J Mol Catal B Enzym 1:135–141

    Article  CAS  Google Scholar 

  • Zheng RC, Zheng YG, Shen YC (2007) A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl Microbiol Biotechnol 74:256–262

    Article  CAS  Google Scholar 

  • Zheng YG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993

    Article  CAS  Google Scholar 

  • Zheng YG, Xue YP, Liu ZQ, Zheng RC, Shen YC (2009) Applications of nitrile converting enzymes in the production of fine chemicals. Chin J Biotech 25:1795–1807

    CAS  Google Scholar 

  • Zhu Q, Fan A, Wang YS, Zhu XQ, Wang Z, Wu MH, Zheng YG (2007) Novel sensitive high-throughput screening strategy for nitrilase-producing strains. Appl Environ Microbiol 73:6053–6057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Basic Research Development Program of China (973 Program) (No. 2009CB724704), National High Technology Research and Development Program of China (863 Program) (No. 2009AA02Z203), and the Natural Scientific Foundation of Zhejiang (No. Z4090612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, HP., Liu, ZQ., Zheng, YG. et al. Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis . Appl Microbiol Biotechnol 87, 1335–1345 (2010). https://doi.org/10.1007/s00253-010-2584-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2584-5

Keywords

Navigation