Skip to main content
Log in

Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NHase:

Nitrile hydratase

L-NHase:

Low molecular weight NHase

H-NHase:

High molecular weight NHase

References

  1. Avaniss-Aghajani E, Jones K, Holtzman A, Aronson T, Glover N, Boian M, Froman S, Brunk CF (1996) Molecular technique for rapid identification of mycobacteria. J Clin Microbiol 34:98–102

    PubMed  CAS  Google Scholar 

  2. Bhalla TC, Aoshima M, Misawa S, Muramatsu R, Furuhashi K (1995) The molecular cloning and sequencing of the nitrilase gene of Rhodococcus rhodochrous PA-34. Acta Biotechnol 15:297–306

    Article  CAS  Google Scholar 

  3. Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhashi K (1992) Asymmetric hydrolysis of alpha aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol 37:184–190

    Article  CAS  Google Scholar 

  4. Brandão PFB, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:5754–5766

    Article  PubMed  Google Scholar 

  5. DiGeronimo MJ, Antoine AD (1976) Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21. Appl Environ Microbiol 31:900–906

    PubMed  CAS  Google Scholar 

  6. Fournand D, Bigey F, Arnaud A (1998) Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Appl Environ Microbiol 64:2844–2852

    PubMed  CAS  Google Scholar 

  7. Freyssinet G, Pelissier B, Freyssinet M, Delon R (1996) Crops resistant to oxynils: from the laboratory to the market. Field Crops Res 45:125–133

    Article  Google Scholar 

  8. Harper DB (1985) Characterization of a nitrilase from Nocardia sp. (rhodochrous group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem 17:677–683

    Article  PubMed  CAS  Google Scholar 

  9. Holtze MS, Sørensen J, Hansen HCB, Aamand J (2006) Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation 17:503–510

    Article  PubMed  CAS  Google Scholar 

  10. Holtze MS, Sørensen SR, Sørensen J, Aamand J (2008) Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments—Insights into degradation pathways, persistent metabolites and involved degrader organism. Environ Pollut 154:155–168

    Article  PubMed  CAS  Google Scholar 

  11. Komeda H, Kobayashi M, Shimizu S (1996) A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. J Biol Chem 271:15796–15802

    Article  PubMed  CAS  Google Scholar 

  12. Komeda H, Kobayashi M, Shimizu S (1996) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci USA 93:4267–4272

    Article  PubMed  CAS  Google Scholar 

  13. Kubáč D, Kaplan O, Elišáková V, Pátek M, Vejvoda V, Slámová K, Tóthová A, Lemaire M, Gallienne E, Lutz-Wahl S, Fischer L, Kuzma M, Pelantová H, van Pelt S, Bolte J, Křen V, Martínková L (2008) Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4. J Mol Catal B Enzym 50:107–113

    Article  Google Scholar 

  14. Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  PubMed  Google Scholar 

  15. McBride KE, Kenny JW, Stalker DM (1986) Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae. Appl Environ Microbiol 52:325–330

    PubMed  CAS  Google Scholar 

  16. Meth-Cohn O, Wang MX (1997) An in-depth study of the biotransformation of nitriles into amides and/or acids using Rhodococcus rhodochrous AJ270. J Chem Soc Perkin Trans I:1099–1104

    Article  Google Scholar 

  17. Nielsen MKK, Holtze MS, Svensmark B, Juhler RK (2007) Demonstrating formation of potentially persistent transformation products from the herbicides bromoxynil and ioxynil using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pestic Manag Sci 63:141–149

    Article  CAS  Google Scholar 

  18. Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2:0001.1–0001.9

    Google Scholar 

  19. Prasad S, Raj J, Bhalla TC (2009) Purification of a hyperactive nitrile hydratase from resting cells of Rhodococcus rhodochrous PA-34. Ind J Microbiol 49:237–242

    Article  CAS  Google Scholar 

  20. Raj J, Prasad S, Bhalla TC (2006) Rhodococcus rhodochrous PA-34: a potential biocatalyst for acrylamide synthesis. Process Biochem 41:1359–1363

    Article  CAS  Google Scholar 

  21. Raj J, Seth A, Prasad S, Bhalla TC (2007) Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol 74:535–539

    Article  PubMed  CAS  Google Scholar 

  22. Rosenbrock P, Munch JC, Scheunert I, Dörfler U (2004) Biodegradation of the herbicide bromoxynil and its plant cell wall bound residues in an agricultural soil. Pestic Biochem Physiol 78:49–57

    Article  CAS  Google Scholar 

  23. Simonsen A, Holtze MS, Sørensen SR, Aamand J (2006) Mineralisation of 2,6-dichlorobenzamide (BAM) in dichlobenil-exposed soils and isolation of a BAM-mineralising Aminobacter sp. Environ Pollut 144:289–295

    Article  PubMed  CAS  Google Scholar 

  24. Sjøholm OR, Aamand J, Sørensen SR, Nybroe O (2010) Degrader density determines spatial variability of 2,6-dichlorobenzamide mineralization in soil. Environ Pollut 158:292–298

    Article  PubMed  Google Scholar 

  25. Sjøholm OR, Nybroe O, Aamand J, Sørensen SR (2010) 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions. Environ Pollut 158:3618–3625

    Article  PubMed  Google Scholar 

  26. Smith AE, Cullimore DR (1974) The in vitro degradation of herbicide bromoxynil. Can J Microbiol 20:773–776

    Article  PubMed  CAS  Google Scholar 

  27. Song L, Wang M, Shi J, Xue Z, Wang MX, Qian S (2007) High resolution X-ray molecular structure of the nitrile hydratase from Rhodococcus erythropolis AJ270 reveals posttranslational oxidation of two cysteines into sulfinic acids and a novel biocatalytic nitrile hydration mechanism. Biochem Biophys Res Commun 362:319–324

    Article  PubMed  CAS  Google Scholar 

  28. Sørensen SR, Holtze MS, Simonsen A, Aamand J (2007) Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Appl Environ Microbiol 73:399–406

    Article  PubMed  Google Scholar 

  29. Stalker DM, Malyj LD, McBride KE (1988) Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. J Biol Chem 263:6310–6314

    PubMed  CAS  Google Scholar 

  30. Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  PubMed  CAS  Google Scholar 

  31. Věková J, Pavlů L, Vosáhlo J, Gabriel J (1995) Degradation of bromoxynil by resting and immobilized cells of Agrobacterium radiobacter 8/4-strain. Biotechnol Lett 17:449–452

    Article  Google Scholar 

  32. Veselá AB, Franc M, Pelantová H, Kubáč D, Vejvoda V, Šulc M, Bhalla TC, Macková M, Lovecká P, Janů P, Demnerová K, Martínková L (2010) Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation 21:761

    Article  PubMed  Google Scholar 

  33. Veselá AB, Franc M, Pelantová H, Kubáč D, Vejvoda V, Šulc M, Bhalla TC, Macková M, Lovecká P, Janů P, Demnerová K, Martínková L (2010) Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation 22:1255

    Article  Google Scholar 

  34. Vokounová M, Vacek O, Kunc F (1992) Degradation of the herbicide bromoxynil in Pseudomonas putida. Folia Microbiol 37:122–127

    Article  Google Scholar 

  35. Vosáhlová J, Pavlů L, Vosáhlo J, Brenner V (1997) Degradation of bromoxynil, ioxynil, dichlobenil and their mixtures by Agrobacterium radiobacter 8/4. Pestic Sci 49:303–306

    Article  Google Scholar 

  36. Wieser M, Takeuchi K, Wada Y, Yamada H, Nagasawa T (1998) Low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1: purification, substrate specificity and comparison with the analogous high-molecular-mass enzyme. FEMS Microbiol Lett 169:17–22

    Article  CAS  Google Scholar 

  37. Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42:12056–12066

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support via projects OC09046 (Ministry of Education of the Czech Republic), EU project MINOTAURUS (7th FP, project no. 265946), P504/11/0394 and 305/09/H008 (Czech Science Foundation) and the LLP-Erasmus Programme grant to F.P. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Martínková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselá, A.B., Pelantová, H., Šulc, M. et al. Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci. J Ind Microbiol Biotechnol 39, 1811–1819 (2012). https://doi.org/10.1007/s10295-012-1184-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1184-z

Keywords

Navigation