Skip to main content

Gene Editing in Sorghum Through Agrobacterium

  • Protocol
  • First Online:
Sorghum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1931))

Abstract

The application of CRISPR/Cas to introduce targeted genomic edits is powering research and discovery across the genetic frontier. Applying CRISPR/Cas in sorghum can facilitate the study of gene function and unlock our understanding of this robust crop that serves as a staple for some of the most food insecure regions on the planet. When paired with recent advances in sorghum tissue culture and Agrobacteria technology, CRISPR/Cas can be used to introduce desirable changes and natural genetic variations directly into agriculturally relevant sorghum lines facilitating product development. This chapter describes CRISPR/Cas gene editing and provides high-level strategies and expectations for applying this technology using Agrobacterium in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Methods 32:347–355

    CAS  Google Scholar 

  2. Chilcoat D, Liu ZB, Sander JD (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. In: Weeks D, Yang B (eds) Progress in molecular biology and translational science, vol 149. Elsevier, San Diego, pp 27–46

    Google Scholar 

  3. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produced disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Cheng X, Shang Q, Zhang Y, Liu J, Gao C et al (2014) Simultaneous editing of three homeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  5. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F et al (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14(1):169–176. https://doi.org/10.1111/pbi.12370

    Article  CAS  PubMed  Google Scholar 

  6. Andersson M, Turesson H, Nicola A, Fält AS, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  7. Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S et al (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linoleic soybean oil. BMC Plant Biol 16:255

    Article  Google Scholar 

  8. Sanchez-Leon S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF et al (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910

    Article  CAS  PubMed  Google Scholar 

  9. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using cas9 and guide RNA. Plant Physiol 169(2):931–945

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T et al (2014) Optimized agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50(1):9–18

    Article  PubMed  Google Scholar 

  12. Cho MJ, Wu E, Kwan J, Yu M, Banh J, Linn W et al (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777

    Article  CAS  PubMed  Google Scholar 

  13. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ et al (2016) Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell 28:1998–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W et al (2018) Developing a flexible, high-efficiency agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16(7):1388–1395. https://doi.org/10.1111/pbi.12879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu E, Zhao ZY (2017) Agrobacterium-mediated sorghum transformation. In: Schmidt A (ed) Plant germline development, methods and protocols, methods in molecular biology, vol 1669. Humana Press, New York, pp 355–364

    Google Scholar 

  16. Sangar C, Samant L, Pawar S, Dhawale P, Chowdhary AS (2016) Online and offline tools: crispr/cas off-target detection. Int J Pharm Sci Res 7(5):1889–1895

    Google Scholar 

  17. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zastrow-Hayes GM, Lin H, Sigmund AL, Hoffman JL, Alarcon CM, Hayes KR et al (2015) Southern-by-sequencing: a robust screening approach for molecular characterization of genetically modified crops. Plant Genome 8(1):1–15

    Article  CAS  Google Scholar 

  19. Fu Y, Foden JA, Khayber C, Maeder ML, Reyon D, Joung LK et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S et al (2013) Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pattanayak V, Lin S, Guillinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123

    Article  CAS  PubMed  Google Scholar 

  25. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the Crop Genome Engineering, Vector Construction, Molecular Characterization, and Controlled Environment groups from Corteva Agriscience™, Agriculture Division of DowDuPont™ for support and Clara Alarcon and Todd J. Jones for comments on the manuscript. This work was funded by a subaward from the CSIRO under the Capturing Heterosis for Smallholder Farmers grant from BMGF. Corteva Agriscience™, Agriculture Division of DowDuPont™ provided funding and in-kind donations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffry D. Sander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sander, J.D. (2019). Gene Editing in Sorghum Through Agrobacterium. In: Zhao, ZY., Dahlberg, J. (eds) Sorghum. Methods in Molecular Biology, vol 1931. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9039-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9039-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9038-2

  • Online ISBN: 978-1-4939-9039-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics