Skip to main content

Non-transmembrane PTPs in Cancer

  • Chapter
  • First Online:
Protein Tyrosine Phosphatases in Cancer

Abstract

In this chapter, we will discuss the role of 14 non-transmembrane (NT) type protein-tyrosine phosphatases (PTPs, encoded by the genes PTPN3, PTPN4, PTPN5, PTPN6, PTPN7, PTPN9, PTPN13, PTPN14, PTPN18, PTPN20, PTPN21, PTPN22, PTPN23, and PTPRR) in cancer. The presentation of NTPTPs includes a brief description of general features of the individual molecules in structure and activity regulation, as well as key facts about their physiological functions. Genetic or epigenetic alterations of NTPTP genes in cancer cells and, if available, the molecular consequences for the specific phenotypic effects are subsequently discussed. A role for defects of PTPN6, PTPN13, or PTPN23 function in certain tumor types has been established best. For other NTPTPs, indications for putative roles in cancer rest on gene mutations in cancer tissues, phenotypes of cell lines with altered NTPTP status, and known physiological functions, but need confirmation in future studies. Clearly, NTPTP effects on cancer phenotypes are dependent on the specific cell context. Roles of NTPTPs in the cancer microenvironment and for therapeutic responses to anti-cancer drugs are emerging. Functions of NTPTPs in immune cells, notably of PTPN6, might also allow therapeutic exploitation in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Møller NP. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol. 2001;21(21):7117–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Neel BG, Gu H, Pao L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28(6):284–93.

    Article  CAS  PubMed  Google Scholar 

  4. Pao LI, Badour K, Siminovitch KA, Neel BG. Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu Rev Immunol. 2007;25:473–523.

    Article  CAS  PubMed  Google Scholar 

  5. Grossmann KS, Rosario M, Birchmeier C, Birchmeier W. The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res. 2010;106:53–89.

    Article  CAS  PubMed  Google Scholar 

  6. Beebe KD, Wang P, Arabaci G, Pei D. Determination of the binding specificity of the SH2 domains of protein tyrosine phosphatase SHP-1 through the screening of a combinatorial phosphotyrosyl peptide library. Biochemistry. 2000;39(43):13251–60.

    Article  CAS  PubMed  Google Scholar 

  7. Imhof D, Wavreille AS, May A, Zacharias M, Tridandapani S, Pei D. Sequence specificity of SHP-1 and SHP-2 Src homology 2 domains. Critical roles of residues beyond the pY+3 position. J Biol Chem. 2006;281(29):20271–82.

    Article  CAS  PubMed  Google Scholar 

  8. Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, Chan R, Iorio C, Zhou X, Neel BG, Pei D. Substrate specificity of protein tyrosine phosphatases 1B, RPTPalpha, SHP-1, and SHP-2. Biochemistry. 2011;50(12):2339–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banville D, Stocco R, Shen SH. Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts. Genomics. 1995;27(1):165–73.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng J, Kydd AR, Nakase K, Noonan KM, Murakami A, Tao H, Dwyer M, Xu C, Zhu Q, Marasco WA. Negative regulation of the SH2-homology containing protein-tyrosine phosphatase-1 (SHP-1) P2 promoter by the HTLV-1 Tax oncoprotein. Blood. 2007;110(6):2110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wlodarski P, Zhang Q, Liu X, Kasprzycka M, Marzec M, Wasik MA. PU.1 activates transcription of SHP-1 gene in hematopoietic cells. J Biol Chem. 2007;282(9):6316–23.

    Article  CAS  PubMed  Google Scholar 

  12. Nakase K, Cheng J, Zhu Q, Marasco WA. Mechanisms of SHP-1 P2 promoter regulation in hematopoietic cells and its silencing in HTLV-1-transformed T cells. J Leukoc Biol. 2009;85(1):165–74.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Shen K, Lu W, Cole PA. The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J Biol Chem. 2003;278(7):4668–74.

    Article  CAS  PubMed  Google Scholar 

  14. Frank C, Burkhardt C, Imhof D, Ringel J, Zschornig O, Wieligmann K, Zacharias M, Böhmer FD. Effective dephosphorylation of Src substrates by SHP-1. J Biol Chem. 2004;279(12):11375–83.

    Article  CAS  PubMed  Google Scholar 

  15. Craggs G, Kellie S. A functional nuclear localization sequence in the C-terminal domain of SHP-1. J Biol Chem. 2001;276(26):23719–25.

    Article  CAS  PubMed  Google Scholar 

  16. Frank C, Keilhack H, Opitz F, Zschornig O, Böhmer FD. Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation. Biochemistry. 1999;38(37):11993–2002.

    Article  CAS  PubMed  Google Scholar 

  17. Sankarshanan M, Ma Z, Iype T, Lorenz U. Identification of a novel lipid raft-targeting motif in Src homology 2-containing phosphatase 1. J Immunol. 2007;179(1):483–90.

    Article  CAS  PubMed  Google Scholar 

  18. Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal. 2005;17(11):1323–32.

    Article  CAS  PubMed  Google Scholar 

  19. Weibrecht I, Böhmer SA, Dagnell M, Kappert K, Östman A, Böhmer FD. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2. Free Radic Biol Med. 2007;43(1):100–10.

    Article  CAS  PubMed  Google Scholar 

  20. Chen CY, Willard D, Rudolph J. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry. 2009;48(6):1399–409.

    Article  CAS  PubMed  Google Scholar 

  21. Kundu S, Fan K, Cao M, Lindner DJ, Zhao ZJ, Borden E, Yi T. Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. J Immunol. 2010;184(11):6529–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ, Thomas ML, Beier DR. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell. 1993;73(7):1445–54.

    Article  CAS  PubMed  Google Scholar 

  23. Bignon JS, Siminovitch KA. Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol. 1994;73(2):168–79.

    Article  CAS  PubMed  Google Scholar 

  24. Croker BA, Lawson BR, Rutschmann S, Berger M, Eidenschenk C, Blasius AL, Moresco EM, Sovath S, Cengia L, Shultz LD, Theofilopoulos AN, Pettersson S, Beutler BA. Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proc Natl Acad Sci U S A. 2008;105(39):15028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nesterovitch AB, Szanto S, Gonda A, Bardos T, Kis-Toth K, Adarichev VA, Olasz K, Ghassemi-Najad S, Hoffman MD, Tharp MD, Mikecz K, Glant TT. Spontaneous insertion of a b2 element in the ptpn6 gene drives a systemic autoinflammatory disease in mice resembling neutrophilic dermatosis in humans. Am J Pathol. 2011;178(4):1701–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995;80(5):729–38.

    Article  CAS  PubMed  Google Scholar 

  27. Lorenz U, Bergemann AD, Steinberg HN, Flanagan JG, Li X, Galli SJ, Neel BG. Genetic analysis reveals cell type-specific regulation of receptor tyrosine kinase c-Kit by the protein tyrosine phosphatase SHP1. J Exp Med. 1996;184(3):1111–26.

    Article  CAS  PubMed  Google Scholar 

  28. Paulson RF, Vesely S, Siminovitch KA, Bernstein A. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1. Nat Genet. 1996;13(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  29. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol Cell Biol. 1998;18(4):2089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen HE, Chang S, Trub T, Neel BG. Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol. 1996;16(7):3685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Umeda S, Beamer WG, Takagi K, Naito M, Hayashi S, Yonemitsu H, Yi T, Shultz LD. Deficiency of SHP-1 protein-tyrosine phosphatase activity results in heightened osteoclast function and decreased bone density. Am J Pathol. 1999;155(1):223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yi T, Mui AL, Krystal G, Ihle JN. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol. 1993;13(12):7577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bone H, Dechert U, Jirik F, Schrader JW, Welham MJ. SHP1 and SHP2 protein-tyrosine phosphatases associate with betac after interleukin-3-induced receptor tyrosine phosphorylation. Identification of potential binding sites and substrates. J Biol Chem. 1997;272(22):14470–6.

    Article  CAS  PubMed  Google Scholar 

  34. Pani G, Kozlowski M, Cambier JC, Mills GB, Siminovitch KA. Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling. J Exp Med. 1995;181(6):2077–84.

    Article  CAS  PubMed  Google Scholar 

  35. Cyster JG, Goodnow CC. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity. 1995;2(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  36. Pani G, Fischer KD, Mlinaric-Rascan I, Siminovitch KA. Signaling capacity of the T cell antigen receptor is negatively regulated by the PTP1C tyrosine phosphatase. J Exp Med. 1996;184(3):839–52.

    Article  CAS  PubMed  Google Scholar 

  37. Lorenz U, Ravichandran KS, Burakoff SJ, Neel BG. Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyperresponsiveness. Proc Natl Acad Sci U S A. 1996;93(18):9624–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, Kinet JP, Long EO. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor. Immunity. 1996;4(1):77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim CH, Qu CK, Hangoc G, Cooper S, Anzai N, Feng GS, Broxmeyer HE. Abnormal chemokine-induced responses of immature and mature hematopoietic cells from motheaten mice implicate the protein tyrosine phosphatase SHP-1 in chemokine responses. J Exp Med. 1999;190(5):681–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kruger J, Butler JR, Cherapanov V, Dong Q, Ginzberg H, Govindarajan A, Grinstein S, Siminovitch KA, Downey GP. Deficiency of Src homology 2-containing phosphatase 1 results in abnormalities in murine neutrophil function: studies in motheaten mice. J Immunol. 2000;165(10):5847–59.

    Article  CAS  PubMed  Google Scholar 

  41. Roach TI, Slater SE, White LS, Zhang X, Majerus PW, Brown EJ, Thomas ML. The protein tyrosine phosphatase SHP-1 regulates integrin-mediated adhesion of macrophages. Curr Biol. 1998;8(18):1035–8.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Somani AK, Siminovitch KA. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin Immunol. 2000;12(4):361–78.

    Article  CAS  PubMed  Google Scholar 

  43. Lowell CA. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol. 2011;3(3).

    Google Scholar 

  44. Pao LI, Lam KP, Henderson JM, Kutok JL, Alimzhanov M, Nitschke L, Thomas ML, Neel BG, Rajewsky K. B cell-specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity. 2007;27(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson DJ, Pao LI, Dhanji S, Murakami K, Ohashi PS, Neel BG. Shp1 regulates T cell homeostasis by limiting IL-4 signals. J Exp Med. 2013;210(7):1419–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abram CL, Roberge GL, Pao LI, Neel BG, Lowell CA. Distinct roles for neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice. Immunity. 2013;38(3):489–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer FD. Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J Biol Chem. 1995;270(36):21277–84.

    Article  CAS  PubMed  Google Scholar 

  48. Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, Böhmer FD. Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling. J Biol Chem. 1998;273(38):24839–46.

    Article  CAS  PubMed  Google Scholar 

  49. Guo DQ, Wu LW, Dunbar JD, Ozes ON, Mayo LD, Kessler KM, Gustin JA, Baerwald MR, Jaffe EA, Warren RS, Donner DB. Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem. 2000;275(15):11216–21.

    Article  CAS  PubMed  Google Scholar 

  50. Yu Z, Su L, Hoglinger O, Jaramillo ML, Banville D, Shen SH. SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem. 1998;273(6):3687–94.

    Article  CAS  PubMed  Google Scholar 

  51. Keilhack H, Muller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Gunther B, Muller T, Birchmeier C, Böhmer FD. Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. J Cell Biol. 2001;152(2):325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marsh HN, Dubreuil CI, Quevedo C, Lee A, Majdan M, Walsh GS, Hausdorff S, Said FA, Zoueva O, Kozlowski M, Siminovitch K, Neel BG, Miller FD, Kaplan DR. SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase. J Cell Biol. 2003;163(5):999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dubois MJ, Bergeron S, Kim HJ, Dombrowski L, Perreault M, Fournes B, Faure R, Olivier M, Beauchemin N, Shulman GI, Siminovitch KA, Kim JK, Marette A. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med. 2006;12(5):549–56.

    Article  CAS  PubMed  Google Scholar 

  54. Xu E, Charbonneau A, Rolland Y, Bellmann K, Pao L, Siminovitch KA, Neel BG, Beauchemin N, Marette A. Hepatocyte-specific ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes. 2012;61(8):1949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mittal Y, Pavlova Y, Garcia-Marcos M, Ghosh P. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. J Biol Chem. 2011;286(37):32404–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krautwald S, Buscher D, Kummer V, Buder S, Baccarini M. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway. Mol Cell Biol. 1996;16(11):5955–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Su L, Zhao Z, Bouchard P, Banville D, Fischer EH, Krebs EG, Shen SH. Positive effect of overexpressed protein-tyrosine phosphatase PTP1C on mitogen-activated signaling in 293 cells. J Biol Chem. 1996;271(17):10385–90.

    Article  CAS  PubMed  Google Scholar 

  58. Minoo P, Zadeh MM, Rottapel R, Lebrun JJ, Ali S. A novel SHP-1/Grb2-dependent mechanism of negative regulation of cytokine-receptor signaling: contribution of SHP-1 C-terminal tyrosines in cytokine signaling. Blood. 2004;103(4):1398–407.

    Article  CAS  PubMed  Google Scholar 

  59. Wang N, Li Z, Ding R, Frank GD, Senbonmatsu T, Landon EJ, Inagami T, Zhao ZJ. Antagonism or synergism. Role of tyrosine phosphatases SHP-1 and SHP-2 in growth factor signaling. J Biol Chem. 2006;281(31):21878–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hsu HC, Shultz LD, Su X, Shi J, Yang PA, Relyea MJ, Zhang HG, Mountz JD. Mutation of the hematopoietic cell phosphatase (Hcph) gene is associated with resistance to gamma-irradiation-induced apoptosis in Src homology protein tyrosine phosphatase (SHP)-1-deficient “motheaten” mutant mice. J Immunol. 2001;166(2):772–80.

    Article  CAS  PubMed  Google Scholar 

  61. Xiao W, Hong H, Kawakami Y, Kato Y, Wu D, Yasudo H, Kimura A, Kubagawa H, Bertoli LF, Davis RS, Chau LA, Madrenas J, Hsia CC, Xenocostas A, Kipps TJ, Hennighausen L, Iwama A, Nakauchi H, Kawakami T. Tumor suppression by phospholipase C-beta3 via SHP-1-mediated dephosphorylation of Stat5. Cancer Cell. 2009;16(2):161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oka T, Ouchida M, Koyama M, Ogama Y, Takada S, Nakatani Y, Tanaka T, Yoshino T, Hayashi K, Ohara N, Kondo E, Takahashi K, Tsuchiyama J, Tanimoto M, Shimizu K, Akagi T. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res. 2002;62(22):6390–4.

    CAS  PubMed  Google Scholar 

  63. Reddy J, Shivapurkar N, Takahashi T, Parikh G, Stastny V, Echebiri C, Crumrine K, Zochbauer-Muller S, Drach J, Zheng Y, Feng Z, Kroft SH, McKenna RW, Gazdar AF. Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors. Oncogene. 2005;24(4):732–6.

    Article  CAS  PubMed  Google Scholar 

  64. Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL. SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood. 2004;103(12):4630–5.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, Zhao D, Zhao H, Wu X, Zhao W, Wang Y, Xia B, Da W. Hypermethylation of SHP-1 promoter in patient with high-risk myelodysplastic syndrome and it predicts poor prognosis. Med Oncol. 2012;29(4):2359–63.

    Article  CAS  PubMed  Google Scholar 

  66. Khoury JD, Rassidakis GZ, Medeiros LJ, Amin HM, Lai R. Methylation of SHP1 gene and loss of SHP1 protein expression are frequent in systemic anaplastic large cell lymphoma. Blood. 2004;104(5):1580–1.

    Article  CAS  PubMed  Google Scholar 

  67. Honorat JF, Ragab A, Lamant L, Delsol G, Ragab-Thomas J. SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling. Blood. 2006;107(10):4130–8.

    Article  CAS  PubMed  Google Scholar 

  68. Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood. 2006;108(8):2796–803.

    Article  CAS  PubMed  Google Scholar 

  69. Bruecher-Encke B, Griffin JD, Neel BG, Lorenz U. Role of the tyrosine phosphatase SHP-1 in K562 cell differentiation. Leukemia. 2001;15(9):1424–32.

    Article  CAS  PubMed  Google Scholar 

  70. Liedtke M, Pandey P, Kumar S, Kharbanda S, Kufe D. Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase. Oncogene. 1998;17(15):1889–92.

    Article  CAS  PubMed  Google Scholar 

  71. Witzig TE, Hu G, Offer SM, Wellik LE, Han JJ, Stenson MJ, Dogan A, Diasio RB, Gupta M. Epigenetic mechanisms of protein tyrosine phosphatase 6 suppression in diffuse large B-cell lymphoma: implications for epigenetic therapy. Leukemia. 2014;28(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  72. Beghini A, Ripamonti CB, Peterlongo P, Roversi G, Cairoli R, Morra E, Larizza L. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet. 2000;9(15):2297–304.

    Article  CAS  PubMed  Google Scholar 

  73. Cheng J, Zhang D, Zhou C, Marasco WA. Down-regulation of SHP1 and up-regulation of negative regulators of JAK/STAT signaling in HTLV-1 transformed cell lines and freshly transformed human peripheral blood CD4+ T-cells. Leuk Res. 2004;28(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  74. Hennige AM, Lammers R, Hoppner W, Arlt D, Strack V, Teichmann R, Machicao F, Ullrich A, Haring HU, Kellerer M. Inhibition of Ret oncogene activity by the protein tyrosine phosphatase SHP1. Endocrinology. 2001;142(10):4441–7.

    Article  CAS  PubMed  Google Scholar 

  75. Roccato E, Miranda C, Raho G, Pagliardini S, Pierotti MA, Greco A. Analysis of SHP-1-mediated down-regulation of the TRK-T3 oncoprotein identifies Trk-fused gene (TFG) as a novel SHP-1-interacting protein. J Biol Chem. 2005;280(5):3382–9.

    Article  CAS  PubMed  Google Scholar 

  76. Mok SC, Kwok TT, Berkowitz RS, Barrett AJ, Tsui FW. Overexpression of the protein tyrosine phosphatase, nonreceptor type 6 (PTPN6), in human epithelial ovarian cancer. Gynecol Oncol. 1995;57(3):299–303.

    Article  CAS  PubMed  Google Scholar 

  77. Yip SS, Crew AJ, Gee JM, Hui R, Blamey RW, Robertson JF, Nicholson RI, Sutherland RL, Daly RJ. Up-regulation of the protein tyrosine phosphatase SHP-1 in human breast cancer and correlation with GRB2 expression. Int J Cancer. 2000;88(3):363–8.

    Article  CAS  PubMed  Google Scholar 

  78. Insabato L, Amelio I, Quarto M, Zannetti A, Tolino F, de Mauro G, Cerchia L, Riccio P, Baumhoer D, Condorelli G, Terracciano L, de Franciscis V. Elevated expression of the tyrosine phosphatase SHP-1 defines a subset of high-grade breast tumors. Oncology. 2009;77(6):378–84.

    Article  CAS  PubMed  Google Scholar 

  79. Montano X. Repression of SHP-1 expression by p53 leads to trkA tyrosine phosphorylation and suppression of breast cancer cell proliferation. Oncogene. 2009;28(43):3787–800.

    Article  CAS  PubMed  Google Scholar 

  80. Sooman L, Ekman S, Tsakonas G, Jaiswal A, Navani S, Edqvist PH, Ponten F, Bergstrom S, Johansson M, Wu X, Blomquist E, Bergqvist M, Gullbo J, Lennartsson J. PTPN6 expression is epigenetically regulated and influences survival and response to chemotherapy in high-grade gliomas. Tumour Biol. 2014;35(5):4479–88.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang L, Wang M, Wang W, Mo J. Incidence and prognostic value of multiple gene promoter methylations in gliomas. J Neurooncol. 2014;116(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  82. Lopez F, Esteve JP, Buscail L, Delesque N, Saint-Laurent N, Theveniau M, Nahmias C, Vaysse N, Susini C. The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chem. 1997;272(39):24448–54.

    Article  CAS  PubMed  Google Scholar 

  83. Douziech N, Calvo E, Coulombe Z, Muradia G, Bastien J, Aubin RA, Lajas A, Morisset J. Inhibitory and stimulatory effects of somatostatin on two human pancreatic cancer cell lines: a primary role for tyrosine phosphatase SHP-1. Endocrinology. 1999;140(2):765–77.

    CAS  PubMed  Google Scholar 

  84. Zatelli MC, Piccin D, Tagliati F, Bottoni A, Luchin A, degli Uberti EC. SRC homology-2-containing protein tyrosine phosphatase-1 restrains cell proliferation in human medullary thyroid carcinoma. Endocrinology. 2005;146(6):2692–8.

    Article  CAS  PubMed  Google Scholar 

  85. Theodoropoulou M, Zhang J, Laupheimer S, Paez-Pereda M, Erneux C, Florio T, Pagotto U, Stalla GK. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res. 2006;66(3):1576–82.

    Article  CAS  PubMed  Google Scholar 

  86. Lapalombella R, Yeh YY, Wang L, Ramanunni A, Rafiq S, Jha S, Staubli J, Lucas DM, Mani R, Herman SE, Johnson AJ, Lozanski A, Andritsos L, Jones J, Flynn JM, Lannutti B, Thompson P, Algate P, Stromatt S, Jarjoura D, Mo X, Wang D, Chen CS, Lozanski G, Heerema NA, Tridandapani S, Freitas MA, Muthusamy N, Byrd JC. Tetraspanin CD37 directly mediates transduction of survival and apoptotic signals. Cancer Cell. 2012;21(5):694–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahn KS, Sethi G, Sung B, Goel A, Ralhan R, Aggarwal BB. Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1. Cancer Res. 2008;68(11):4406–15.

    Article  CAS  PubMed  Google Scholar 

  88. Liu SH, Wang KB, Lan KH, Lee WJ, Pan HC, Wu SM, Peng YC, Chen YC, Shen CC, Cheng HC, Liao KK, Sheu ML. Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PLoS One. 2012;7(8), e43711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Böhmer F, Friedrich K. Protein-tyrosine phosphatases as wardens of STAT signaling. JAKSTAT. 2014;3(1), e28087.

    PubMed  PubMed Central  Google Scholar 

  90. Esposito N, Colavita I, Quintarelli C, Sica AR, Peluso AL, Luciano L, Picardi M, Del Vecchio L, Buonomo T, Hughes TP, White D, Radich JP, Russo D, Branford S, Saglio G, Melo JV, Martinelli R, Ruoppolo M, Kalebic T, Martinelli G, Pane F. SHP-1 expression accounts for resistance to imatinib treatment in Philadelphia chromosome-positive cells derived from patients with chronic myeloid leukemia. Blood. 2011;118(13):3634–44.

    Article  CAS  PubMed  Google Scholar 

  91. Tai WT, Cheng AL, Shiau CW, Huang HP, Huang JW, Chen PJ, Chen KF. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol. 2011;55(5):1041–8.

    Article  CAS  PubMed  Google Scholar 

  92. Tai WT, Shiau CW, Chen PJ, Chu PY, Huang HP, Liu CY, Huang JW, Chen KF. Discovery of novel Src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology. 2014;59(1):190–201.

    Article  CAS  PubMed  Google Scholar 

  93. Fan LC, Teng HW, Shiau CW, Lin H, Hung MH, Chen YL, Huang JW, Tai WT, Yu HC, Chen KF. SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget. 2014;5(15):6243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  95. Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer. 2013;13(8):525–41.

    Article  CAS  PubMed  Google Scholar 

  96. Monu N, Frey AB. Suppression of proximal T cell receptor signaling and lytic function in CD8+ tumor-infiltrating T cells. Cancer Res. 2007;67(23):11447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stromnes IM, Fowler C, Casamina CC, Georgopolos CM, McAfee MS, Schmitt TM, Tan X, Kim TD, Choi I, Blattman JN, Greenberg PD. Abrogation of SRC homology region 2 domain-containing phosphatase 1 in tumor-specific T cells improves efficacy of adoptive immunotherapy by enhancing the effector function and accumulation of short-lived effector T cells in vivo. J Immunol. 2012;189(4):1812–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gu M, Warshawsky I, Majerus PW. Cloning and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to retinaldehyde-binding protein and yeast SEC14p. Proc Natl Acad Sci U S A. 1992;89(7):2980–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Seimiya H, Sawabe T, Toho M, Tsuruo T. Phorbol ester-resistant monoblastoid leukemia cells with a functional mitogen-activated protein kinase cascade but without responsive protein tyrosine phosphatases. Oncogene. 1995;11(10):2047–54.

    CAS  PubMed  Google Scholar 

  100. Wang X, Huynh H, Gjorloff-Wingren A, Monosov E, Stridsberg M, Fukuda M, Mustelin T. Enlargement of secretory vesicles by protein tyrosine phosphatase PTP-MEG2 in rat basophilic leukemia mast cells and Jurkat T cells. J Immunol. 2002;168(9):4612–9.

    Article  CAS  PubMed  Google Scholar 

  101. Kruger JM, Fukushima T, Cherepanov V, Borregaard N, Loeve C, Shek C, Sharma K, Tanswell AK, Chow CW, Downey GP. Protein-tyrosine phosphatase MEG2 is expressed by human neutrophils. Localization to the phagosome and activation by polyphosphoinositides. J Biol Chem. 2002;277(4):2620–8.

    Article  CAS  PubMed  Google Scholar 

  102. Huynh H, Wang X, Li W, Bottini N, Williams S, Nika K, Ishihara H, Godzik A, Mustelin T. Homotypic secretory vesicle fusion induced by the protein tyrosine phosphatase MEG2 depends on polyphosphoinositides in T cells. J Immunol. 2003;171(12):6661–71.

    Article  CAS  PubMed  Google Scholar 

  103. Huynh H, Bottini N, Williams S, Cherepanov V, Musumeci L, Saito K, Bruckner S, Vachon E, Wang X, Kruger J, Chow CW, Pellecchia M, Monosov E, Greer PA, Trimble W, Downey GP, Mustelin T. Control of vesicle fusion by a tyrosine phosphatase. Nat Cell Biol. 2004;6(9):831–9.

    Article  CAS  PubMed  Google Scholar 

  104. Gjorloff-Wingren A, Saxena M, Han S, Wang X, Alonso A, Renedo M, Oh P, Williams S, Schnitzer J, Mustelin T. Subcellular localization of intracellular protein tyrosine phosphatases in T cells. Eur J Immunol. 2000;30(8):2412–21.

    Article  CAS  PubMed  Google Scholar 

  105. Saito K, Williams S, Bulankina A, Honing S, Mustelin T. Association of protein-tyrosine phosphatase MEG2 via its Sec14p homology domain with vesicle-trafficking proteins. J Biol Chem. 2007;282(20):15170–8.

    Article  CAS  PubMed  Google Scholar 

  106. Wang Y, Vachon E, Zhang J, Cherepanov V, Kruger J, Li J, Saito K, Shannon P, Bottini N, Huynh H, Ni H, Yang H, McKerlie C, Quaggin S, Zhao ZJ, Marsden PA, Mustelin T, Siminovitch KA, Downey GP. Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. J Exp Med. 2005;202(11):1587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cho CY, Koo SH, Wang Y, Callaway S, Hedrick S, Mak PA, Orth AP, Peters EC, Saez E, Montminy M, Schultz PG, Chanda SK. Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metab. 2006;3(5):367–78.

    Article  CAS  PubMed  Google Scholar 

  108. Hao Q, Samten B, Ji HL, Zhao ZJ, Tang H. Tyrosine phosphatase PTP-MEG2 negatively regulates vascular endothelial growth factor receptor signaling and function in endothelial Cells. Am J Physiol Cell Physiol. 2012;303(5):C548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang X, Gschweng E, Van Handel B, Cheng D, Mikkola HK, Witte ON. Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood. 2011;117(7):2157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bu Y, Su F, Wang X, Gao H, Lei L, Chang N, Wu Q, Hu K, Zhu X, Chang Z, Meng K, Xiong JW. Protein tyrosine phosphatase PTPN9 regulates erythroid cell development through STAT3 dephosphorylation in zebrafish. J Cell Sci. 2014;127(Pt 12):2761–70.

    Article  CAS  PubMed  Google Scholar 

  111. Xu MJ, Sui X, Zhao R, Dai C, Krantz SB, Zhao ZJ. PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood. 2003;102(13):4354–60.

    Article  CAS  PubMed  Google Scholar 

  112. Yuan T, Wang Y, Zhao ZJ, Gu H. Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. J Biol Chem. 2010;285(20):14861–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Du WW, Fang L, Li M, Yang X, Liang Y, Peng C, Qian W, O’Malley YQ, Askeland RW, Sugg SL, Qian J, Lin J, Jiang Z, Yee AJ, Sefton M, Deng Z, Shan SW, Wang CH, Yang BB. MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. J Cell Sci. 2013;126(Pt 6):1440–53.

    Article  CAS  PubMed  Google Scholar 

  114. Su F, Ren F, Rong Y, Wang Y, Geng Y, Feng M, Ju Y, Li Y, Zhao ZJ, Meng K, Chang Z. Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer. Breast Cancer Res. 2012;14(2):R38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang B, Lemay S, Tsai S, Veillette A. SH2 domain-mediated interaction of inhibitory protein tyrosine kinase Csk with protein tyrosine phosphatase-HSCF. Mol Cell Biol. 2001;21(4):1077–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shiota M, Tanihiro T, Nakagawa Y, Aoki N, Ishida N, Miyazaki K, Ullrich A, Miyazaki H. Protein tyrosine phosphatase PTP20 induces actin cytoskeleton reorganization by dephosphorylating p190 RhoGAP in rat ovarian granulosa cells stimulated with follicle-stimulating hormone. Mol Endocrinol. 2003;17(4):534–49.

    Article  CAS  PubMed  Google Scholar 

  117. Spencer S, Dowbenko D, Cheng J, Li W, Brush J, Utzig S, Simanis V, Lasky LA. PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. J Cell Biol. 1997;138(4):845–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim YW, Wang H, Sures I, Lammers R, Martell KJ, Ullrich A. Characterization of the PEST family protein tyrosine phosphatase BDP1. Oncogene. 1996;13(10):2275–9.

    CAS  PubMed  Google Scholar 

  119. Gensler M, Buschbeck M, Ullrich A. Negative regulation of HER2 signaling by the PEST-type protein-tyrosine phosphatase BDP1. J Biol Chem. 2004;279(13):12110–6.

    Article  CAS  PubMed  Google Scholar 

  120. Wang HM, Xu YF, Ning SL, Yang DX, Li Y, Du YJ, Yang F, Zhang Y, Liang N, Yao W, Zhang LL, Gu LC, Gao CJ, Pang Q, Chen YX, Xiao KH, Ma R, Yu X, Sun JP. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes. Cell Res. 2014;24(9):1067–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yu X, Sun JP, He Y, Guo X, Liu S, Zhou B, Hudmon A, Zhang ZY. Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci U S A. 2007;104(50):19767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood. 1999;93(6):2013–24.

    CAS  PubMed  Google Scholar 

  123. Vang T, Liu WH, Delacroix L, Wu S, Vasile S, Dahl R, Yang L, Musumeci L, Francis D, Landskron J, Tasken K, Tremblay ML, Lie BA, Page R, Mustelin T, Rahmouni S, Rickert RC, Tautz L. LYP inhibits T-cell activation when dissociated from CSK. Nat Chem Biol. 2012;8(5):437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gjorloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T. Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol. 1999;29(12):3845–54.

    Article  CAS  PubMed  Google Scholar 

  125. Cloutier JF, Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med. 1999;189(1):111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan AC. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science. 2004;303(5658):685–9.

    Article  CAS  PubMed  Google Scholar 

  127. Hermiston ML, Zikherman J, Zhu JW. CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev. 2009;228(1):288–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Salmond RJ, Brownlie RJ, Morrison VL, Zamoyska R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat Immunol. 2014;15(9):875–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rhee I, Veillette A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol. 2012;13(5):439–47.

    Article  CAS  PubMed  Google Scholar 

  130. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, Boucher G, Ripke S, Ellinghaus D, Burtt N, Fennell T, Kirby A, Latiano A, Goyette P, Green T, Halfvarson J, Haritunians T, Korn JM, Kuruvilla F, Lagace C, Neale B, Lo KS, Schumm P, Torkvist L, Dubinsky MC, Brant SR, Silverberg MS, Duerr RH, Altshuler D, Gabriel S, Lettre G, Franke A, D’Amato M, McGovern DP, Cho JH, Rioux JD, Xavier RJ, Daly MJ. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43(11):1066–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Menard L, Saadoun D, Isnardi I, Ng YS, Meyers G, Massad C, Price C, Abraham C, Motaghedi R, Buckner JH, Gregersen PK, Meffre E. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J Clin Invest. 2011;121(9):3635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Habib T, Funk A, Rieck M, Brahmandam A, Dai X, Panigrahi AK, Luning Prak ET, Meyer-Bahlburg A, Sanda S, Greenbaum C, Rawlings DJ, Buckner JH. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J Immunol. 2012;188(1):487–96.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang J, Zahir N, Jiang Q, Miliotis H, Heyraud S, Meng X, Dong B, Xie G, Qiu F, Hao Z, McCulloch CA, Keystone EC, Peterson AC, Siminovitch KA. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet. 2011;43(9):902–7.

    Article  CAS  PubMed  Google Scholar 

  134. Chien W, Tidow N, Williamson EA, Shih LY, Krug U, Kettenbach A, Fermin AC, Roifman CM, Koeffler HP. Characterization of a myeloid tyrosine phosphatase, Lyp, and its role in the Bcr-Abl signal transduction pathway. J Biol Chem. 2003;278(30):27413–20.

    Article  CAS  PubMed  Google Scholar 

  135. Negro R, Gobessi S, Longo PG, He Y, Zhang ZY, Laurenti L, Efremov DG. Overexpression of the autoimmunity-associated phosphatase PTPN22 promotes survival of antigen-stimulated CLL cells by selectively activating AKT. Blood. 2012;119(26):6278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang Q, Tonks NK. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci U S A. 1991;88(14):5949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Itoh F, Ikuta S, Hinoda Y, Arimura Y, Ohe M, Adachi M, Ariyama T, Inazawa J, Imai K, Yachi A. Expression and chromosomal assignment of PTPH1 gene encoding a cytosolic protein tyrosine phosphatase homologous to cytoskeletal-associated proteins. Int J Cancer. 1993;55(6):947–51.

    Article  CAS  PubMed  Google Scholar 

  138. Sahin M, Slaugenhaupt SA, Gusella JF, Hockfield S. Expression of PTPH1, a rat protein tyrosine phosphatase, is restricted to the derivatives of a specific diencephalic segment. Proc Natl Acad Sci U S A. 1995;92(17):7859–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gu MX, York JD, Warshawsky I, Majerus PW. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to cytoskeletal protein 4.1. Proc Natl Acad Sci U S A. 1991;88(13):5867–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang SH, Kobayashi R, Graves PR, Piwnica-Worms H, Tonks NK. Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein. J Biol Chem. 1997;272(43):27281–7.

    Article  CAS  PubMed  Google Scholar 

  141. Zhang SH, Liu J, Kobayashi R, Tonks NK. Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem. 1999;274(25):17806–12.

    Article  CAS  PubMed  Google Scholar 

  142. Abaan OD, Hendriks W, Uren A, Toretsky JA, Erkizan HV. Valosin containing protein (VCP/p97) is a novel substrate for the protein tyrosine phosphatase PTPL1. Exp Cell Res. 2013;319(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  143. Han S, Williams S, Mustelin T. Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling. Eur J Immunol. 2000;30(5):1318–25.

    Article  CAS  PubMed  Google Scholar 

  144. Sozio MS, Mathis MA, Young JA, Walchli S, Pitcher LA, Wrage PC, Bartok B, Campbell A, Watts JD, Aebersold R, Hooft van Huijsduijnen R, van Oers NS. PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor zeta subunit. J Biol Chem. 2004;279(9):7760–9.

    Google Scholar 

  145. Zheng Y, Schlondorff J, Blobel CP. Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem. 2002;277(45):42463–70.

    Article  CAS  PubMed  Google Scholar 

  146. Jespersen T, Gavillet B, van Bemmelen MX, Cordonier S, Thomas MA, Staub O, Abriel H. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochem Biophys Res Commun. 2006;348(4):1455–62.

    Article  CAS  PubMed  Google Scholar 

  147. Bauler TJ, Hughes ED, Arimura Y, Mustelin T, Saunders TL, King PD. Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase. J Immunol. 2007;178(6):3680–7.

    Article  CAS  PubMed  Google Scholar 

  148. Pilecka I, Patrignani C, Pescini R, Curchod ML, Perrin D, Xue Y, Yasenchak J, Clark A, Magnone MC, Zaratin P, Valenzuela D, Rommel C, Hooft van Huijsduijnen R. Protein-tyrosine phosphatase H1 controls growth hormone receptor signaling and systemic growth. J Biol Chem. 2007;282(48):35405–15.

    Google Scholar 

  149. Patrignani C, Magnone MC, Tavano P, Ardizzone M, Muzio V, Greco B, Zaratin PF. Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition. Behav Brain Funct. 2008;4:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Patrignani C, Lafont DT, Muzio V, Greco B, Hooft van Huijsduijnen R, Zaratin PF. Characterization of protein tyrosine phosphatase H1 knockout mice in animal models of local and systemic inflammation. J Inflamm (Lond). 2010;7:16.

    Article  CAS  Google Scholar 

  151. Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, Ptak J, Silliman N, Peters BA, van der Heijden MS, Parmigiani G, Yan H, Wang TL, Riggins G, Powell SM, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 2004;304(5674):1164–6.

    Article  CAS  PubMed  Google Scholar 

  152. International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F, Youyong L, Nettekoven G, Ozenberger B, Peterson J, Rao TS, Remacle J, Schafer AJ, Shibata T, Stratton MR, Vockley JG, Watanabe K, Yang H, Yuen MM, Knoppers BM, Bobrow M, Cambon-Thomsen A, Dressler LG, Dyke SO, Joly Y, Kato K, Kennedy KL, Nicolas P, Parker MJ, Rial-Sebbag E, Romeo-Casabona CM, Shaw KM, Wallace S, Wiesner GL, Zeps N, Lichter P, Biankin AV, Chabannon C, Chin L, Clement B, de Alava E, Degos F, Ferguson ML, Geary P, Hayes DN, Hudson TJ, Johns AL, Kasprzyk A, Nakagawa H, Penny R, Piris MA, Sarin R, Scarpa A, Shibata T, van de Vijver M, Futreal PA, Aburatani H, Bayes M, Botwell DD, Campbell PJ, Estivill X, Gerhard DS, Grimmond SM, Gut I, Hirst M, Lopez-Otin C, Majumder P, Marra M, McPherson JD, Nakagawa H, Ning Z, Puente XS, Ruan Y, Shibata T, Stratton MR, Stunnenberg HG, Swerdlow H, Velculescu VE, Wilson RK, Xue HH, Yang L, Spellman PT, Bader GD, Boutros PC, Campbell PJ, Flicek P, Getz G, Guigo R, Guo G, Haussler D, Heath S, Hubbard TJ, Jiang T, Jones SM, Li Q, Lopez-Bigas N, Luo R, Muthuswamy L, Ouellette BF, Pearson JV, Puente XS, Quesada V, Raphael BJ, Sander C, Shibata T, Speed TP, Stein LD, Stuart JM, Teague JW, Totoki Y, Tsunoda T, Valencia A, Wheeler DA, Wu H, Zhao S, Zhou G, Stein LD, Guigo R, Hubbard TJ, Joly Y, Jones SM, Kasprzyk A, Lathrop M, Lopez-Bigas N, Ouellette BF, Spellman PT, Teague JW, Thomas G, Valencia A, Yoshida T, Kennedy KL, Axton M, Dyke SO, Futreal PA, Gerhard DS, Gunter C, Guyer M, Hudson TJ, McPherson JD, Miller LJ, Ozenberger B, Shaw KM, Kasprzyk A, Stein LD, Zhang J, Haider SA, Wang J, Yung CK, Cros A, Liang Y, Gnaneshan S, Guberman J, Hsu J, Bobrow M, Chalmers DR, Hasel KW, Joly Y, Kaan TS, Kennedy KL, Knoppers BM, Lowrance WW, Masui T, Nicolas P, Rial-Sebbag E, Rodriguez LL, Vergely C, Yoshida T, Grimmond SM, Biankin AV, Bowtell DD, Cloonan N, deFazio A, Eshleman JR, Etemadmoghadam D, Gardiner BB, Kench JG, Scarpa A, Sutherland RL, Tempero MA, Waddell NJ, Wilson PJ, McPherson JD, Gallinger S, Tsao MS, Shaw PA, Petersen GM, Mukhopadhyay D, Chin L, DePinho RA, Thayer S, Muthuswamy L, Shazand K, Beck T, Sam M, Timms L, Ballin V, Lu Y, Ji J, Zhang X, Chen F, Hu X, Zhou G, Yang Q, Tian G, Zhang L, Xing X, Li X, Zhu Z, Yu Y, Yu J, Yang H, Lathrop M, Tost J, Brennan P, Holcatova I, Zaridze D, Brazma A, Egevard L, Prokhortchouk E, Banks RE, Uhlen M, Cambon-Thomsen A, Viksna J, Ponten F, Skryabin K, Stratton MR, Futreal PA, Birney E, Borg A, Borresen-Dale AL, Caldas C, Foekens JA, Martin S, Reis-Filho JS, Richardson AL, Sotiriou C, Stunnenberg HG, Thoms G, van de Vijver M, van’t Veer L, Calvo F, Birnbaum D, Blanche H, Boucher P, Boyault S, Chabannon C, Gut I, Masson-Jacquemier JD, Lathrop M, Pauporte I, Pivot X, Vincent-Salomon A, Tabone E, Theillet C, Thomas G, Tost J, Treilleux I, Calvo F, Bioulac-Sage P, Clement B, Decaens T, Degos F, Franco D, Gut I, Gut M, Heath S, Lathrop M, Samuel D, Thomas G, Zucman-Rossi J, Lichter P, Eils R, Brors B, Korbel JO, Korshunov A, Landgraf P, Lehrach H, Pfister S, Radlwimmer B, Reifenberger G, Taylor MD, von Kalle C, Majumder PP, Sarin R, Rao TS, Bhan MK, Scarpa A, Pederzoli P, Lawlor RA, Delledonne M, Bardelli A, Biankin AV, Grimmond SM, Gress T, Klimstra D, Zamboni G, Shibata T, Nakamura Y, Nakagawa H, Kusada J, Tsunoda T, Miyano S, Aburatani H, Kato K, Fujimoto A, Yoshida T, Campo E, Lopez-Otin C, Estivill X, Guigo R, de Sanjose S, Piris MA, Montserrat E, Gonzalez-Diaz M, Puente XS, Jares P, Valencia A, Himmelbauer H, Quesada V, Bea S, Stratton MR, Futreal PA, Campbell PJ, Vincent-Salomon A, Richardson AL, Reis-Filho JS, van de Vijver M, Thomas G, Masson-Jacquemier JD, Aparicio S, Borg A, Borresen-Dale AL, Caldas C, Foekens JA, Stunnenberg HG, van’t Veer L, Easton DF, Spellman PT, Martin S, Barker AD, Chin L, Collins FS, Compton CC, Ferguson ML, Gerhard DS, Getz G, Gunter C, Guttmacher A, Guyer M, Hayes DN, Lander ES, Ozenberger B, Penny R, Peterson J, Sander C, Shaw KM, Speed TP, Spellman PT, Vockley JG, Wheeler DA, Wilson RK, Hudson TJ, Chin L, Knoppers BM, Lander ES, Lichter P, Stein LD, Stratton MR, Anderson W, Barker AD, Bell C, Bobrow M, Burke W, Collins FS, Compton CC, DePinho RA, Easton DF, Futreal PA, Gerhard DS, Green AR, Guyer M, Hamilton SR, Hubbard TJ, Kallioniemi OP, Kennedy KL, Ley TJ, Liu ET, Lu Y, Majumder P, Marra M, Ozenberger B, Peterson J, Schafer AJ, Spellman PT, Stunnenberg HG, Wainwright BJ, Wilson RK, Yang H. International network of cancer genome projects. Nature. 2010;464(7291):993–8.

    Article  CAS  Google Scholar 

  153. Jung Y, Kim P, Jung Y, Keum J, Kim SN, Choi YS, Do IG, Lee J, Choi SJ, Kim S, Lee JE, Kim J, Lee S, Kim J. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes Cancer. 2012;51(6):590–7.

    Article  CAS  PubMed  Google Scholar 

  154. Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol. 2007;81(5):2231–9.

    Article  CAS  PubMed  Google Scholar 

  155. Töpffer S, Müller-Schiffmann A, Matentzoglu K, Scheffner M, Steger G. Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. J Gen Virol. 2007;88(Pt 11):2956–65.

    Article  PubMed  CAS  Google Scholar 

  156. Kranjec C, Banks L. A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions. J Virol. 2011;85(4):1757–64.

    Article  CAS  PubMed  Google Scholar 

  157. Warabi M, Nemoto T, Ohashi K, Kitagawa M, Hirokawa K. Expression of protein tyrosine phosphatases and its significance in esophageal cancer. Exp Mol Pathol. 2000;68(3):187–95.

    Article  CAS  PubMed  Google Scholar 

  158. Wu CW, Chen JH, Kao HL, Li AF, Lai CH, Chi CW, Lin WC. PTPN3 and PTPN4 tyrosine phosphatase expression in human gastric adenocarcinoma. Anticancer Res. 2006;26(2B):1643–9.

    CAS  PubMed  Google Scholar 

  159. Gao Q, Zhao YJ, Wang XY, Guo WJ, Gao S, Wei L, Shi JY, Shi GM, Wang ZC, Zhang YN, Shi YH, Ding J, Ding ZB, Ke AW, Dai Z, Wu FZ, Wang H, Qiu ZP, Chen ZA, Zhang ZF, Qiu SJ, Zhou J, He XH, Fan J. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology. 2014;146(5):1397–407.

    Article  CAS  PubMed  Google Scholar 

  160. Cardinale V, Alvaro D. PTPN3 mutations and HBV may exert synergistic effects in the origin of the intrahepatic cholangiocarcinoma. Gastroenterology. 2014;147(3):719–20.

    Article  CAS  PubMed  Google Scholar 

  161. Hsu EC, Lin YC, Hung CS, Huang CJ, Lee MY, Yang SC, Ting LP. Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3. J Biomed Sci. 2007;14(6):731–44.

    Article  CAS  PubMed  Google Scholar 

  162. Zhi HY, Hou SW, Li RS, Basir Z, Xiang Q, Szabo A, Chen G. PTPH1 cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization. Oncogene. 2011;30(14):1706–15.

    Article  CAS  PubMed  Google Scholar 

  163. Tang J, Qi X, Mercola D, Han J, Chen G. Essential role of p38gamma in K-Ras transformation independent of phosphorylation. J Biol Chem. 2005;280(25):23910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hou SW, Zhi HY, Pohl N, Loesch M, Qi XM, Li RS, Basir Z, Chen G. PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. Cancer Res. 2010;70(7):2901–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hou S, Suresh PS, Qi X, Lepp A, Mirza SP, Chen G. p38gamma Mitogen-activated protein kinase signals through phosphorylating its phosphatase ptph1 in regulating ras protein oncogenesis and stress response. J Biol Chem. 2012;287(33):27895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Young JA, Becker AM, Medeiros JJ, Shapiro VS, Wang A, Farrar JD, Quill TA, Hooft van Huijsduijnen R, van Oers NS. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol Immunol. 2008;45(14):3756–66.

    Google Scholar 

  167. Bauler TJ, Hendriks WJ, King PD. The FERM and PDZ domain-containing protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction. PLoS One. 2008;3(12), e4014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J Biol Chem. 2000;275(21):16167–73.

    Article  CAS  PubMed  Google Scholar 

  169. Whited JL, Robichaux MB, Yang JC, Garrity PA. Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development. 2007;134(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  170. Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, Hashimoto K, Ohsugi M, Kiyama Y, Horai R, Sudo K, Kakuta S, Iwakura Y, Iino M, Kano M, Manabe T, Yamamoto T. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci. 2007;26(8):2269–78.

    Article  PubMed  Google Scholar 

  171. Gu M, Meng K, Majerus PW. The effect of overexpression of the protein tyrosine phosphatase PTPMEG on cell growth and on colony formation in soft agar in COS-7 cells. Proc Natl Acad Sci U S A. 1996;93(23):12980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhou J, Wan B, Shan J, Shi H, Li Y, Huo K. PTPN4 negatively regulates CrkI in human cell lines. Cell Mol Biol Lett. 2013;18(2):297–314.

    Article  CAS  PubMed  Google Scholar 

  173. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39(Database issue):D945–50.

    Article  CAS  PubMed  Google Scholar 

  174. Prehaud C, Wolff N, Terrien E, Lafage M, Megret F, Babault N, Cordier F, Tan GS, Maitrepierre E, Menager P, Chopy D, Hoos S, England P, Delepierre M, Schnell MJ, Buc H, Lafon M. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal. 2010;3(105):ra5.

    Article  PubMed  CAS  Google Scholar 

  175. Trave G. PDZ-peptide complexes: as exciting as ever. Structure. 2011;19(10):1350–1.

    Article  CAS  PubMed  Google Scholar 

  176. Babault N, Cordier F, Lafage M, Cockburn J, Haouz A, Prehaud C, Rey FA, Delepierre M, Buc H, Lafon M, Wolff N. Peptides targeting the PDZ domain of PTPN4 are efficient inducers of glioblastoma cell death. Structure. 2011;19(10):1518–24.

    Article  CAS  PubMed  Google Scholar 

  177. Maisonneuve P, Caillet-Saguy C, Raynal B, Gilquin B, Chaffotte A, Perez J, Zinn-Justin S, Delepierre M, Buc H, Cordier F, Wolff N. Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain. 2014. FEBS J.

    Google Scholar 

  178. Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Muller S, Knapp S. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell. 2009;136(2):352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y. The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates beta-catenin. Mol Biol Cell. 2003;14(6):2520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cardone L, Carlucci A, Affaitati A, Livigni A, DeCristofaro T, Garbi C, Varrone S, Ullrich A, Gottesman ME, Avvedimento EV, Feliciello A. Mitochondrial AKAP121 binds and targets protein tyrosine phosphatase D1, a novel positive regulator of src signaling. Mol Cell Biol. 2004;24(11):4613–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Smith AL, Mitchell PJ, Shipley J, Gusterson BA, Rogers MV, Crompton MR. Pez: a novel human cDNA encoding protein tyrosine phosphatase- and ezrin-like domains. Biochem Biophys Res Commun. 1995;209(3):959–65.

    Article  CAS  PubMed  Google Scholar 

  182. Sawada M, Ogata M, Fujino Y, Hamaoka T. cDNA cloning of a novel protein tyrosine phosphatase with homology to cytoskeletal protein 4.1 and its expression in T-lineage cells. Biochem Biophys Res Commun. 1994;203(1):479–84.

    Article  CAS  PubMed  Google Scholar 

  183. Ogata M, Takada T, Mori Y, Uchida Y, Miki T, Okuyama A, Kosugi A, Sawada M, Oh-hora M, Hamaoka T. Regulation of phosphorylation level and distribution of PTP36, a putative protein tyrosine phosphatase, by cell-substrate adhesion. J Biol Chem. 1999;274(29):20717–24.

    Article  CAS  PubMed  Google Scholar 

  184. Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y. Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. J Cell Sci. 2000;113(Pt 17):3117–23.

    CAS  PubMed  Google Scholar 

  185. Wyatt L, Wadham C, Crocker LA, Lardelli M, Khew-Goodall Y. The protein tyrosine phosphatase Pez regulates TGFbeta, epithelial-mesenchymal transition, and organ development. J Cell Biol. 2007;178(7):1223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yin M, Zhang L. Hippo signaling: a hub of growth control, tumor suppression and pluripotency maintenance. J Genet Genomics. 2011;38(10):471–81.

    Article  CAS  PubMed  Google Scholar 

  187. Poernbacher I, Baumgartner R, Marada SK, Edwards K, Stocker H. Drosophila Pez acts in Hippo signaling to restrict intestinal stem cell proliferation. Curr Biol. 2012;22(5):389–96.

    Article  CAS  PubMed  Google Scholar 

  188. Au AC, Hernandez PA, Lieber E, Nadroo AM, Shen YM, Kelley KA, Gelb BD, Diaz GA. Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am J Hum Genet. 2010;87(3):436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mendola A, Schlogel MJ, Ghalamkarpour A, Irrthum A, Nguyen HL, Fastre E, Bygum A, van der Vleuten C, Fagerberg C, Baselga E, Quere I, Mulliken JB, Boon LM, Brouillard P, Vikkula M, Lymphedema Research Group. Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema. Mol Syndromol. 2013;4(6):257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang P, Guo A, Possemato A, Wang C, Beard L, Carlin C, Markowitz SD, Polakiewicz RD, Wang Z. Identification and functional characterization of p130Cas as a substrate of protein tyrosine phosphatase nonreceptor 14. Oncogene. 2013;32(16):2087–95.

    Article  CAS  PubMed  Google Scholar 

  191. Niedergethmann M, Alves F, Neff JK, Heidrich B, Aramin N, Li L, Pilarsky C, Grutzmann R, Allgayer H, Post S, Gretz N. Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br J Cancer. 2007;97(10):1432–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Boiarskikh UA, Kondrakhin Iu V, Evshin IS, Sharipov RN, Komel’kov AV, Musatkina EA, Chevkina EM, Sukoian MA, Kolpakov FA, Kashkin KN, Filipenko ML. [Prediction of a non-small cell lung cancer sensitivity to cisplatin and paclitaxel based on the marker genes expression]. Mol Biol (Mosk). 2011;45(4):652–61.

    CAS  Google Scholar 

  193. Andersen JN, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen AH, Dolinski B, Kraus M, Roberts B, Arthur W, Klinghoffer RA, Gargano D, Li L, Feldman I, Lynch B, Rush J, Hendrickson RC, Blume-Jensen P, Paweletz CP. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci Transl Med. 2010;2(43):43ra55.

    Article  PubMed  CAS  Google Scholar 

  194. Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH, Zhang J. PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene. 2013;32(10):1266–73.

    Article  PubMed  CAS  Google Scholar 

  195. Wang W, Huang J, Wang X, Yuan J, Li X, Feng L, Park J, Chen J. PTPN14 is required for the density-dependent control of YAP1. Genes Dev. 2012;26(17):1959–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Huang JM, Nagatomo I, Suzuki E, Mizuno T, Kumagai T, Berezov A, Zhang H, Karlan B, Greene MI, Wang Q. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene. 2013;32(17):2220–9.

    Article  CAS  PubMed  Google Scholar 

  197. Wang W, Li X, Huang J, Feng L, Dolinta KG, Chen J. Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics. 2014;13(1):119–31.

    Article  CAS  PubMed  Google Scholar 

  198. Wilson KE, Li YW, Yang N, Shen H, Orillion AR, Zhang J. PTPN14 forms a complex with Kibra and LATS1 proteins and negatively regulates the YAP oncogenic function. J Biol Chem. 2014;289(34):23693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Michaloglou C, Lehmann W, Martin T, Delaunay C, Hueber A, Barys L, Niu H, Billy E, Wartmann M, Ito M, Wilson CJ, Digan ME, Bauer A, Voshol H, Christofori G, Sellers WR, Hofmann F, Schmelzle T. The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS One. 2013;8(4), e61916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Möller NP, Möller KB, Lammers R, Kharitonenkov A, Sures I, Ullrich A. Src kinase associates with a member of a distinct subfamily of protein-tyrosine phosphatases containing an ezrin-like domain. Proc Natl Acad Sci U S A. 1994;91(16):7477–81.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tokuchi H, Higashitsuji H, Nishiyama H, Nonoguchi K, Nagao T, Xue JH, Itoh K, Ogawa O, Fujita J. Expression of protein tyrosine phosphatase PTP-RL10 and its isoform in the mouse testis. Int J Urol. 1999;6(11):572–7.

    Article  CAS  PubMed  Google Scholar 

  202. Dörner C, Ciossek T, Muller S, Moller PH, Ullrich A, Lammers R. Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem. 1998;273(32):20267–75.

    Article  PubMed  Google Scholar 

  203. Jui HY, Tseng RJ, Wen X, Fang HI, Huang LM, Chen KY, Kung HJ, Ann DK, Shih HM. Protein-tyrosine phosphatase D1, a potential regulator and effector for Tec family kinases. J Biol Chem. 2000;275(52):41124–32.

    Article  CAS  PubMed  Google Scholar 

  204. Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento EV, Gottesman M, Garbi C, Feliciello A. Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem. 2008;283(16):10919–29.

    Article  CAS  PubMed  Google Scholar 

  205. Chen J, Lee G, Fanous AH, Zhao Z, Jia P, O’Neill A, Walsh D, Kendler KS, Chen X, International Schizophrenia Consortium. Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia. Schizophr Res. 2011;131(1-3):43–51.

    PubMed  PubMed Central  Google Scholar 

  206. Dunican DS, McWilliam P, Tighe O, Parle-McDermott A, Croke DT. Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization. Oncogene. 2002;21(20):3253–7.

    Article  CAS  PubMed  Google Scholar 

  207. Korff S, Woerner SM, Yuan YP, Bork P, von Knebel DM, Gebert J. Frameshift mutations in coding repeats of protein tyrosine phosphatase genes in colorectal tumors with microsatellite instability. BMC Cancer. 2008;8:329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Wu ZZ, Lu HP, Chao CC. Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem Pharmacol. 2010;80(2):262–76.

    Article  CAS  PubMed  Google Scholar 

  209. Carlucci A, Porpora M, Garbi C, Galgani M, Santoriello M, Mascolo M, di Lorenzo D, Altieri V, Quarto M, Terracciano L, Gottesman ME, Insabato L, Feliciello A. PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J Biol Chem. 2010;285(50):39260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. van Eekelen M, Runtuwene V, Masselink W, den Hertog J. Pair-wise regulation of convergence and extension cell movements by four phosphatases via RhoA. PLoS One. 2012;7(4), e35913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Irie S, Li Y, Kanki H, Ohyama T, Deaven LL, Somlo S, Sato TA. Identification of two Fas-associated phosphatase-1 (FAP-1) promoters in human cancer cells. DNA Seq. 2001;11(6):519–26.

    Article  CAS  PubMed  Google Scholar 

  212. Yoshida S, Harada H, Nagai H, Fukino K, Teramoto A, Emi M. Head-to-head juxtaposition of Fas-associated phosphatase-1 (FAP-1) and c-Jun NH2-terminal kinase 3 (JNK3) genes: genomic structure and seven polymorphisms of the FAP-1 gene. J Hum Genet. 2002;47(11):614–9.

    Article  CAS  PubMed  Google Scholar 

  213. Han XJ, Xue L, Gong L, Zhu SJ, Yao L, Wang SM, Lan M, Zhang W, Li YH. Stat3 inhibits PTPN13 expression in squamous cell lung carcinoma through recruitment of HDAC5. Biomed Res Int. 2013;2013:468963.

    PubMed  PubMed Central  Google Scholar 

  214. Huang W, Zhu C, Wang H, Horvath E, Eklund EA. The interferon consensus sequence-binding protein (ICSBP/IRF8) represses PTPN13 gene transcription in differentiating myeloid cells. J Biol Chem. 2008;283(12):7921–35.

    Article  CAS  PubMed  Google Scholar 

  215. Freiss G, Chalbos D. PTPN13/PTPL1: an important regulator of tumor aggressiveness. Anticancer Agents Med Chem. 2011;11(1):78–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Abaan OD, Toretsky JA. PTPL1: a large phosphatase with a split personality. Cancer Metastasis Rev. 2008;27(2):205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hagemann N, Ackermann N, Christmann J, Brier S, Yu F, Erdmann KS. The serologically defined colon cancer antigen-3 interacts with the protein tyrosine phosphatase PTPN13 and is involved in the regulation of cytokinesis. Oncogene. 2013;32(39):4602–13.

    Article  CAS  PubMed  Google Scholar 

  218. Wansink DG, Peters W, Schaafsma I, Sutmuller RP, Oerlemans F, Adema GJ, Wieringa B, van der Zee CE, Hendriks W. Mild impairment of motor nerve repair in mice lacking PTP-BL tyrosine phosphatase activity. Physiol Genomics. 2004;19(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  219. Nakahira M, Tanaka T, Robson BE, Mizgerd JP, Grusby MJ. Regulation of signal transducer and activator of transcription signaling by the tyrosine phosphatase PTP-BL. Immunity. 2007;26(2):163–76.

    Article  CAS  PubMed  Google Scholar 

  220. Lorber B, Hendriks WJ, Van der Zee CE, Berry M, Logan A. Effects of LAR and PTP-BL phosphatase deficiency on adult mouse retinal cells activated by lens injury. Eur J Neurosci. 2005;21(9):2375–83.

    Article  PubMed  Google Scholar 

  221. Glondu-Lassis M, Dromard M, Chavey C, Puech C, Fajas L, Hendriks W, Freiss G. Downregulation of protein tyrosine phosphatase PTP-BL represses adipogenesis. Int J Biochem Cell Biol. 2009;41(11):2173–80.

    Article  CAS  PubMed  Google Scholar 

  222. Sato T, Irie S, Kitada S, Reed JC. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science. 1995;268(5209):411–5.

    Article  CAS  PubMed  Google Scholar 

  223. Ungefroren H, Kruse ML, Trauzold A, Roeschmann S, Roeder C, Arlt A, Henne-Bruns D, Kalthoff H. FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. J Cell Sci. 2001;114(Pt 15):2735–46.

    CAS  PubMed  Google Scholar 

  224. Ivanov VN, Lopez Bergami P, Maulit G, Sato TA, Sassoon D, Ronai Z. FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol. 2003;23(10):3623–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Foehr ED, Lorente G, Vincent V, Nikolich K, Urfer R. FAS associated phosphatase (FAP-1) blocks apoptosis of astrocytomas through dephosphorylation of FAS. J Neurooncol. 2005;74(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  226. Wieckowski E, Atarashi Y, Stanson J, Sato TA, Whiteside TL. FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. J Cell Biochem. 2007;100(1):16–28.

    Article  CAS  PubMed  Google Scholar 

  227. Ivanov VN, Ronai Z, Hei TK. Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem. 2006;281(3):1840–52.

    Article  CAS  PubMed  Google Scholar 

  228. Irie S, Hachiya T, Rabizadeh S, Maruyama W, Mukai J, Li Y, Reed JC, Bredesen DE, Sato TA. Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Lett. 1999;460(2):191–8.

    Article  CAS  PubMed  Google Scholar 

  229. Zhang W, Tong Q, Conrad K, Wozney J, Cheung JY, Miller BA. Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1. Am J Physiol Cell Physiol. 2007;292(5):C1746–58.

    Article  CAS  PubMed  Google Scholar 

  230. Yanagisawa J, Takahashi M, Kanki H, Yano-Yanagisawa H, Tazunoki T, Sawa E, Nishitoba T, Kamishohara M, Kobayashi E, Kataoka S, Sato T. The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. J Biol Chem. 1997;272(13):8539–45.

    Article  CAS  PubMed  Google Scholar 

  231. Zhang X, Brunner T, Carter L, Dutton RW, Rogers P, Bradley L, Sato T, Reed JC, Green D, Swain SL. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J Exp Med. 1997;185(10):1837–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Arai M, Kannagi M, Matsuoka M, Sato T, Yamamoto N, Fujii M. Expression of FAP-1 (Fas-associated phosphatase) and resistance to Fas-mediated apoptosis in T cell lines derived from human T cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis patients. AIDS Res Hum Retroviruses. 1998;14(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  233. Zhou YW, Komada Y, Inaba H, Azuma E, Sakurai M. Down-regulation of Fas-associated phosphatase-1 (FAP-1) in interleukin-2-activated T cells. Cell Immunol. 1998;186(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  234. Mundle SD, Mativi BY, Bagai K, Feldman G, Cheema P, Gautam U, Reza S, Cartlidge JD, Venugopal P, Shetty V, Gregory SA, Robin E, Rifkin S, Shah R, Raza A. Spontaneous down-regulation of Fas-associated phosphatase-1 may contribute to excessive apoptosis in myelodysplastic marrows. Int J Hematol. 1999;70(2):83–90.

    CAS  PubMed  Google Scholar 

  235. Myc A, Arscott PL, Bretz JD, Thompson NW, Baker Jr JR. Characterization of FAP-1 expression and function in thyroid follicular cells. Endocrinology. 1999;140(11):5431–4.

    Article  CAS  PubMed  Google Scholar 

  236. Li Y, Kanki H, Hachiya T, Ohyama T, Irie S, Tang G, Mukai J, Sato T. Negative regulation of Fas-mediated apoptosis by FAP-1 in human cancer cells. Int J Cancer. 2000;87(4):473–9.

    Article  CAS  PubMed  Google Scholar 

  237. Elnemr A, Ohta T, Yachie A, Kayahara M, Kitagawa H, Fujimura T, Ninomiya I, Fushida S, Nishimura GI, Shimizu K, Miwa K. Human pancreatic cancer cells disable function of Fas receptors at several levels in Fas signal transduction pathway. Int J Oncol. 2001;18(2):311–6.

    CAS  PubMed  Google Scholar 

  238. Meinhold-Heerlein I, Stenner-Liewen F, Liewen H, Kitada S, Krajewska M, Krajewski S, Zapata JM, Monks A, Scudiero DA, Bauknecht T, Reed JC. Expression and potential role of Fas-associated phosphatase-1 in ovarian cancer. Am J Pathol. 2001;158(4):1335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Yao H, Song E, Chen J, Hamar P. Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. Br J Cancer. 2004;91(9):1718–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Xiao ZY, Wu W, Eagleton N, Chen HQ, Shao J, Teng H, Liu TH, Jiang ZM, Yao HR. Silencing Fas-associated phosphatase 1 expression enhances efficiency of chemotherapy for colon carcinoma with oxaliplatin. World J Gastroenterol. 2010;16(1):112–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Schickel R, Park SM, Murmann AE, Peter ME. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell. 2010;38(6):908–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Huang W, Hu L, Bei L, Hjort E, Eklund EA. The leukemia-associated fusion protein Tel-platelet-derived growth factor receptor beta (Tel-PdgfRbeta) inhibits transcriptional repression of PTPN13 gene by interferon consensus sequence binding protein (Icsbp). J Biol Chem. 2012;287(11):8110–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Nicolini V, Cassinelli G, Cuccuru G, Bongarzone I, Petrangolini G, Tortoreto M, Mondellini P, Casalini P, Favini E, Zaffaroni N, Zunino F, Lanzi C. Interplay between Ret and Fap-1 regulates CD95-mediated apoptosis in medullary thyroid cancer cells. Biochem Pharmacol. 2011;82(7):778–88.

    Article  CAS  PubMed  Google Scholar 

  244. Cuppen E, Nagata S, Wieringa B, Hendriks W. No evidence for involvement of mouse protein-tyrosine phosphatase-BAS-like Fas-associated phosphatase-1 in Fas-mediated apoptosis. J Biol Chem. 1997;272(48):30215–20.

    Article  CAS  PubMed  Google Scholar 

  245. Houghton JA, Harwood FG, Gibson AA, Tillman DM. The fas signaling pathway is functional in colon carcinoma cells and induces apoptosis. Clin Cancer Res. 1997;3(12 Pt 1):2205–9.

    CAS  PubMed  Google Scholar 

  246. Hayashi H, Tatebe S, Osaki M, Goto A, Sato K, Ito H. Anti-Fas antibody-induced apoptosis in human colorectal carcinoma cell lines: role of the p53 gene. Apoptosis. 1998;3(6):431–7.

    Article  CAS  PubMed  Google Scholar 

  247. Tillman DM, Harwood FG, Gibson AA, Houghton JA. Expression of genes that regulate Fas signalling and Fas-mediated apoptosis in colon carcinoma cells. Cell Death Differ. 1998;5(5):450–7.

    Article  CAS  PubMed  Google Scholar 

  248. Yamada Y, Sugahara K, Tsuruda K, Nohda K, Hata T, Maeda T, Honda M, Tawara M, Hayashibara T, Joh T, Tomonaga M, Miyazaki Y, Kamihira S. Fas-resistance in ATL cell lines not associated with HTLV-I or FAP-1 production. Cancer Lett. 1999;147(1-2):215–9.

    Article  CAS  PubMed  Google Scholar 

  249. Kim KM, Lee K, Hong YS, Park HY. Fas-mediated apoptosis and expression of related genes in human malignant hematopoietic cells. Exp Mol Med. 2000;32(4):246–54.

    Article  CAS  PubMed  Google Scholar 

  250. Castilla C, Chinchon D, Medina R, Torrubia FJ, Japon MA, Saez C. PTPL1 and PKCdelta contribute to proapoptotic signalling in prostate cancer cells. Cell Death Dis. 2013;4, e576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bompard G, Puech C, Prebois C, Vignon F, Freiss G. Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells. J Biol Chem. 2002;277(49):47861–9.

    Article  CAS  PubMed  Google Scholar 

  252. Dromard M, Bompard G, Glondu-Lassis M, Puech C, Chalbos D, Freiss G. The putative tumor suppressor gene PTPN13/PTPL1 induces apoptosis through insulin receptor substrate-1 dephosphorylation. Cancer Res. 2007;67(14):6806–13.

    Article  CAS  PubMed  Google Scholar 

  253. Miyazaki T, Atarashi Y, Yasumura S, Minatoya I, Ogawa K, Iwamoto M, Minemura M, Shimizu Y, Sato TA, Watanabe A, Sugiyama T. Fas-associated phosphatase-1 promotes Fas-mediated apoptosis in human colon cancer cells: novel function of FAP-1. J Gastroenterol Hepatol. 2006;21(1 Pt 1):84–91.

    Article  CAS  PubMed  Google Scholar 

  254. Winterhoff BJ, Arlt A, Duttmann A, Ungefroren H, Schafer H, Kalthoff H, Kruse ML. Characterisation of FAP-1 expression and CD95 mediated apoptosis in the A818-6 pancreatic adenocarcinoma differentiation system. Differentiation. 2012;83(3):148–57.

    Article  CAS  PubMed  Google Scholar 

  255. Kuchay S, Duan S, Schenkein E, Peschiaroli A, Saraf A, Florens L, Washburn MP, Pagano M. FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol. 2013;15(5):472–80.

    Article  CAS  PubMed  Google Scholar 

  256. Gump JM, Staskiewicz L, Morgan MJ, Bamberg A, Riches DW, Thorburn A. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol. 2014;16(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  257. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, Eldridge R, Kley N, Menon AG, Pulaski K, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell. 1993;72(5):791–800.

    Article  CAS  PubMed  Google Scholar 

  258. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, Hoang-Xuan K, Demczuk S, Desmaze C, Plougastel B, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature. 1993;363(6429):515–21.

    Article  CAS  PubMed  Google Scholar 

  259. Boedigheimer M, Laughon A. Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development. 1993;118(4):1291–301.

    CAS  PubMed  Google Scholar 

  260. Woods DF, Bryant PJ. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell. 1991;66(3):451–64.

    Article  CAS  PubMed  Google Scholar 

  261. Lee SH, Shin MS, Park WS, Kim SY, Kim HS, Lee JH, Han SY, Lee HK, Park JY, Oh RR, Jang JJ, Lee JY, Yoo NJ. Immunohistochemical localization of FAP-1, an inhibitor of Fas-mediated apoptosis, in normal and neoplastic human tissues. APMIS. 1999;107(12):1101–8.

    Article  CAS  PubMed  Google Scholar 

  262. Juric D, Sale S, Hromas RA, Yu R, Wang Y, Duran GE, Tibshirani R, Einhorn LH, Sikic BI. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Proc Natl Acad Sci U S A. 2005;102(49):17763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, Oza JH, Yao M, Juan D, Liou LS, Ganesan S, Levine AJ, Rathmell WK, Bhanot GV. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol. 2010;4:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Nariai Y, Mishima K, Yoshimura Y, Sekine J. FAP-1 and NF-kappaB expressions in oral squamous cell carcinoma as potential markers for chemo-radio sensitivity and prognosis. Int J Oral Maxillofac Surg. 2011;40(4):419–26.

    Article  CAS  PubMed  Google Scholar 

  265. Sabine VS, Sims AH, Macaskill EJ, Renshaw L, Thomas JS, Dixon JM, Bartlett JM. Gene expression profiling of response to mTOR inhibitor everolimus in pre-operatively treated post-menopausal women with oestrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2010;122(2):419–28.

    Article  CAS  PubMed  Google Scholar 

  266. Abaan OD, Levenson A, Khan O, Furth PA, Uren A, Toretsky JA. PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene. 2005;24(16):2715–22.

    Article  CAS  PubMed  Google Scholar 

  267. Herrmann L, Dittmar T, Erdmann KS. The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Mol Biol Cell. 2003;14(1):230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Huang W, Bei L, Eklund EA. Fas-associated phosphatase 1 mediates Fas resistance in myeloid progenitor cells expressing the Bcr-abl oncogene. Leuk Lymphoma. 2013;54(3):619–30.

    Article  CAS  PubMed  Google Scholar 

  269. Huang W, Bei L, Eklund EA. Fas-associated phosphatase 1 (Fap1) influences betacatenin activity in myeloid progenitor cells expressing the Bcr-abl oncogene. J Biol Chem. 2013;288(18):12766–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. van Ham M, Hendriks W. PDZ domains-glue and guide. Mol Biol Rep. 2003;30(2):69–82.

    Article  PubMed  Google Scholar 

  271. Itakura M, Mori S, Park NH, Bonavida B. Both HPV and carcinogen contribute to the development of resistance to apoptosis during oral carcinogenesis. Int J Oncol. 2000;16(3):591–7.

    CAS  PubMed  Google Scholar 

  272. Freiss G, Puech C, Vignon F. Extinction of insulin-like growth factor-I mitogenic signaling by antiestrogen-stimulated Fas-associated protein tyrosine phosphatase-1 in human breast cancer cells. Mol Endocrinol. 1998;12(4):568–79.

    Article  CAS  PubMed  Google Scholar 

  273. Rey JM, Pujol P, Callier P, Cavailles V, Freiss G, Maudelonde T, Brouillet JP. Semiquantitative reverse transcription-polymerase chain reaction to evaluate the expression patterns of genes involved in the oestrogen pathway. J Mol Endocrinol. 2000;24(3):433–40.

    Article  CAS  PubMed  Google Scholar 

  274. Révillion F, Puech C, Rabenoelina F, Chalbos D, Peyrat JP, Freiss G. Expression of the putative tumor suppressor gene PTPN13/PTPL1 is an independent prognostic marker for overall survival in breast cancer. Int J Cancer. 2009;124(3):638–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Castilla C, Flores ML, Conde JM, Medina R, Torrubia FJ, Japon MA, Saez C. Downregulation of protein tyrosine phosphatase PTPL1 alters cell cycle and upregulates invasion-related genes in prostate cancer cells. Clin Exp Metastasis. 2012;29(4):349–58.

    Article  CAS  PubMed  Google Scholar 

  276. Ying J, Li H, Cui Y, Wong AH, Langford C, Tao Q. Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia. 2006;20(6):1173–5.

    Article  CAS  PubMed  Google Scholar 

  277. Yeh SH, Wu DC, Tsai CY, Kuo TJ, Yu WC, Chang YS, Chen CL, Chang CF, Chen DS, Chen PJ. Genetic characterization of fas-associated phosphatase-1 as a putative tumor suppressor gene on chromosome 4q21.3 in hepatocellular carcinoma. Clin Cancer Res. 2006;12(4):1097–108.

    Article  CAS  PubMed  Google Scholar 

  278. Wei W, Jiang M, Luo L, Li Z, Wang P, Dong WQ. Colorectal cancer susceptibility variants alter risk of breast cancer in a Chinese Han population. Genet Mol Res. 2013;12(4):6268–74.

    Article  CAS  PubMed  Google Scholar 

  279. Niu J, Huang YJ, Wang LE, Sturgis EM, Wei Q. Genetic polymorphisms in the PTPN13 gene and risk of squamous cell carcinoma of head and neck. Carcinogenesis. 2009;30(12):2053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Mita Y, Yasuda Y, Sakai A, Yamamoto H, Toyooka S, Gunduz M, Tanabe S, Naomoto Y, Ouchida M, Shimizu K. Missense polymorphisms of PTPRJ and PTPN13 genes affect susceptibility to a variety of human cancers. J Cancer Res Clin Oncol. 2010;136(2):249–59.

    Article  CAS  PubMed  Google Scholar 

  281. Zhu JH, Chen R, Yi W, Cantin GT, Fearns C, Yang Y, Yates 3rd JR, Lee JD. Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene. 2008;27(18):2525–31.

    Article  CAS  PubMed  Google Scholar 

  282. Hoover AC, Strand GL, Nowicki PN, Anderson ME, Vermeer PD, Klingelhutz AJ, Bossler AD, Pottala JV, Hendriks WJ, Lee JH. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene. 2009;28(45):3960–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Spanos WC, Hoover A, Harris GF, Wu S, Strand GL, Anderson ME, Klingelhutz AJ, Hendriks W, Bossler AD, Lee JH. The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol. 2008;82(5):2493–500.

    Article  CAS  PubMed  Google Scholar 

  284. Maher DM, Bell MC, O’Donnell EA, Gupta BK, Jaggi M, Chauhan SC. Curcumin suppresses human papillomavirus oncoproteins, restores p53, Rb, and PTPN13 proteins and inhibits benzo[a]pyrene-induced upregulation of HPV E7. Mol Carcinog. 2011;50(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  285. Lucci MA, Orlandi R, Triulzi T, Tagliabue E, Balsari A, Villa-Moruzzi E. Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cell Oncol. 2010;32(5-6):361–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U, Klein R. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell. 2002;9(4):725–37.

    Article  CAS  PubMed  Google Scholar 

  287. Vermeer PD, Bell M, Lee K, Vermeer DW, Wieking BG, Bilal E, Bhanot G, Drapkin RI, Ganesan S, Klingelhutz AJ, Hendriks WJ, Lee JH. ErbB2, EphrinB1, Src kinase and PTPN13 signaling complex regulates MAP kinase signaling in human cancers. PLoS One. 2012;7(1), e30447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Vermeer PD, Colbert PL, Wieking BG, Vermeer DW, Lee JH. Targeting ERBB receptors shifts their partners and triggers persistent ERK signaling through a novel ERBB/EFNB1 complex. Cancer Res. 2013;73(18):5787–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Kawano S, Ikeda W, Kishimoto M, Ogita H, Takai Y. Silencing of ErbB3/ErbB2 signaling by immunoglobulin-like Necl-2. J Biol Chem. 2009;284(35):23793–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Yamada A, Inoue E, Deguchi-Tawarada M, Matsui C, Togawa A, Nakatani T, Ono Y, Takai Y. Necl-2/CADM1 interacts with ErbB4 and regulates its activity in GABAergic neurons. Mol Cell Neurosci. 2013;56:234–43.

    Article  CAS  PubMed  Google Scholar 

  291. Sugiyama H, Mizutani K, Kurita S, Okimoto N, Shimono Y, Takai Y. Interaction of Necl-4/CADM4 with ErbB3 and integrin alpha6 beta4 and inhibition of ErbB2/ErbB3 signaling and hemidesmosome disassembly. Genes Cells. 2013;18(6):519–28.

    Article  CAS  PubMed  Google Scholar 

  292. Zhang Y, Tu Y, Zhao J, Chen K, Wu C. Reversion-induced LIM interaction with Src reveals a novel Src inactivation cycle. J Cell Biol. 2009;184(6):785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Scrima M, De Marco C, De Vita F, Fabiani F, Franco R, Pirozzi G, Rocco G, Malanga D, Viglietto G. The nonreceptor-type tyrosine phosphatase PTPN13 is a tumor suppressor gene in non-small cell lung cancer. Am J Pathol. 2012;180(3):1202–14.

    Article  CAS  PubMed  Google Scholar 

  294. Han X, Xue L, Zhou L, Gong L, Zhu S, Yao L, Wang S, Lan M, Li Y, Zhang W. The role of PTPN13 in invasion and metastasis of lung squamous cell carcinoma. Exp Mol Pathol. 2013;95(3):270–5.

    Article  CAS  PubMed  Google Scholar 

  295. Sun Z, Wang L, Eckloff BW, Deng B, Wang Y, Wampfler JA, Jang J, Wieben ED, Jen J, You M, Yang P. Conserved recurrent gene mutations correlate with pathway deregulation and clinical outcomes of lung adenocarcinoma in never-smokers. BMC Med Genomics. 2014;7:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Saras J, Franzen P, Aspenstrom P, Hellman U, Gonez LJ, Heldin CH. A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. J Biol Chem. 1997;272(39):24333–8.

    Article  CAS  PubMed  Google Scholar 

  297. Fodero-Tavoletti MT, Hardy MP, Cornell B, Katsis F, Sadek CM, Mitchell CA, Kemp BE, Tiganis T. Protein tyrosine phosphatase hPTPN20a is targeted to sites of actin polymerization. Biochem J. 2005;389(Pt 2):343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Ohsugi M, Kuramochi S, Matsuda S, Yamamoto T. Molecular cloning and characterization of a novel cytoplasmic protein-tyrosine phosphatase that is specifically expressed in spermatocytes. J Biol Chem. 1997;272(52):33092–9.

    Article  CAS  PubMed  Google Scholar 

  299. Stenzel N, Fetzer CP, Heumann R, Erdmann KS. PDZ-domain-directed basolateral targeting of the peripheral membrane protein FRMPD2 in epithelial cells. J Cell Sci. 2009;122(Pt 18):3374–84.

    Article  CAS  PubMed  Google Scholar 

  300. Cuppen E, Wijers M, Schepens J, Fransen J, Wieringa B, Hendriks W. A FERM domain governs apical confinement of PTP-BL in epithelial cells. J Cell Sci. 1999;112(Pt 19):3299–308.

    CAS  PubMed  Google Scholar 

  301. Cao L, Zhang L, Ruiz-Lozano P, Yang Q, Chien KR, Graham RM, Zhou M. A novel putative protein-tyrosine phosphatase contains a BRO1-like domain and suppresses Ha-ras-mediated transformation. J Biol Chem. 1998;273(33):21077–83.

    Article  CAS  PubMed  Google Scholar 

  302. Toyooka S, Ouchida M, Jitsumori Y, Tsukuda K, Sakai A, Nakamura A, Shimizu N, Shimizu K. HD-PTP: A novel protein tyrosine phosphatase gene on human chromosome 3p21.3. Biochem Biophys Res Commun. 2000;278(3):671–8.

    Article  CAS  PubMed  Google Scholar 

  303. Doyotte A, Mironov A, McKenzie E, Woodman P. The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis. Proc Natl Acad Sci U S A. 2008;105(17):6308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Tanase CA. Histidine domain-protein tyrosine phosphatase interacts with Grb2 and GrpL. PLoS One. 2010;5(12), e14339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Gingras MC, Zhang YL, Kharitidi D, Barr AJ, Knapp S, Tremblay ML, Pause A. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One. 2009;4(4):e5105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Mariotti M, Castiglioni S, Garcia-Manteiga JM, Beguinot L, Maier JA. HD-PTP inhibits endothelial migration through its interaction with Src. Int J Biochem Cell Biol. 2009;41(3):687–93.

    Article  CAS  PubMed  Google Scholar 

  307. Lin G, Aranda V, Muthuswamy SK, Tonks NK. Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the ‘PTP-ome’. Genes Dev. 2011;25(13):1412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Gingras MC, Kharitidi D, Chenard V, Uetani N, Bouchard M, Tremblay ML, Pause A. Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP). Int J Dev Biol. 2009;53(7):1069–74.

    Article  CAS  PubMed  Google Scholar 

  309. Castiglioni S, Maier JA, Mariotti M. The tyrosine phosphatase HD-PTP: A novel player in endothelial migration. Biochem Biophys Res Commun. 2007;364(3):534–9.

    Article  CAS  PubMed  Google Scholar 

  310. Mariotti M, Castiglioni S, Beguinot L, Maier JA. The tyrosine phosphatase HD-PTP is regulated by FGF-2 through proteasome degradation. Front Biosci. 2006;11:2138–43.

    Article  CAS  PubMed  Google Scholar 

  311. Castiglioni S, Maier JA. The tyrosine phosphatase HD-PTP (PTPN23) is degraded by calpains in a calcium-dependent manner. Biochem Biophys Res Commun. 2012;421(2):380–3.

    Article  CAS  PubMed  Google Scholar 

  312. Popov S, Popova E, Inoue M, Gottlinger HG. Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production. J Virol. 2009;83(14):7185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Sette P, Mu R, Dussupt V, Jiang J, Snyder G, Smith P, Xiao TS, Bouamr F. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release. Structure. 2011;19(10):1485–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Miura GI, Roignant JY, Wassef M, Treisman JE. Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development. 2008;135(11):1913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Ali N, Zhang L, Taylor S, Mironov A, Urbe S, Woodman P. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr Biol. 2013;23(6):453–61.

    Article  CAS  PubMed  Google Scholar 

  316. Mariotti M, Castiglioni S, Maier JA. Inhibition of T24 human bladder carcinoma cell migration by RNA interference suppressing the expression of HD-PTP. Cancer Lett. 2009;273(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  317. Tanaka K, Kondo K, Kitajima K, Muraoka M, Nozawa A, Hara T. Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA. J Biol Chem. 2013;288(33):23990–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Gilbert MM, Tipping M, Veraksa A, Moberg KH. A screen for conditional growth suppressor genes identifies the Drosophila homolog of HD-PTP as a regulator of the oncoprotein Yorkie. Dev Cell. 2011;20(5):700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Barr AJ, Knapp S. MAPK-specific tyrosine phosphatases: new targets for drug discovery? Trends Pharmacol Sci. 2006;27(10):525–30.

    Article  CAS  PubMed  Google Scholar 

  320. Pulido R, Zuniga A, Ullrich A. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 1998;17(24):7337–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Blanco-Aparicio C, Torres J, Pulido R. A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J Cell Biol. 1999;147(6):1129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Muñoz JJ, Tarrega C, Blanco-Aparicio C, Pulido R. Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents. Biochem J. 2003;372(Pt 1):193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  323. Bult A, Zhao F, Dirkx Jr R, Raghunathan A, Solimena M, Lombroso PJ. STEP: a family of brain-enriched PTPs. Alternative splicing produces transmembrane, cytosolic and truncated isoforms. Eur J Cell Biol. 1997;72(4):337–44.

    CAS  PubMed  Google Scholar 

  324. Boulanger LM, Lombroso PJ, Raghunathan A, During MJ, Wahle P, Naegele JR. Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase. J Neurosci. 1995;15(2):1532–44.

    CAS  PubMed  Google Scholar 

  325. Karim FD, Rubin GM. PTP-ER, a novel tyrosine phosphatase, functions downstream of Ras1 to downregulate MAP kinase during Drosophila eye development. Mol Cell. 1999;3(6):741–50.

    Article  CAS  PubMed  Google Scholar 

  326. Paul S, Lombroso PJ. Receptor and nonreceptor protein tyrosine phosphatases in the nervous system. Cell Mol Life Sci. 2003;60(11):2465–82.

    Article  CAS  PubMed  Google Scholar 

  327. Nguyen TH, Liu J, Lombroso PJ. Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. J Biol Chem. 2002;277(27):24274–9.

    Article  CAS  PubMed  Google Scholar 

  328. Braithwaite SP, Adkisson M, Leung J, Nava A, Masterson B, Urfer R, Oksenberg D, Nikolich K. Regulation of NMDA receptor trafficking and function by striatal-enriched tyrosine phosphatase (STEP). Eur J Neurosci. 2006;23(11):2847–56.

    Article  PubMed  Google Scholar 

  329. Tashev R, Moura PJ, Venkitaramani DV, Prosperetti C, Centonze D, Paul S, Lombroso PJ. A substrate trapping mutant form of striatal-enriched protein tyrosine phosphatase prevents amphetamine-induced stereotypies and long-term potentiation in the striatum. Biol Psychiatry. 2009;65(8):637–45.

    Article  CAS  PubMed  Google Scholar 

  330. Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P, Nairn AC, Lombroso PJ. Abeta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J Neurosci. 2010;30(17):5948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Paul S, Connor JA. NR2B-NMDA receptor-mediated increases in intracellular Ca2+ concentration regulate the tyrosine phosphatase, STEP, and ERK MAP kinase signaling. J Neurochem. 2010;114(4):1107–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Venkitaramani DV, Paul S, Zhang Y, Kurup P, Ding L, Tressler L, Allen M, Sacca R, Picciotto MR, Lombroso PJ. Knockout of striatal enriched protein tyrosine phosphatase in mice results in increased ERK1/2 phosphorylation. Synapse. 2009;63(1):69–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Venkitaramani DV, Moura PJ, Picciotto MR, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase (STEP) knockout mice have enhanced hippocampal memory. Eur J Neurosci. 2011;33(12):2288–98.

    Article  PubMed  PubMed Central  Google Scholar 

  334. Pelov I, Teltsh O, Greenbaum L, Rigbi A, Kanyas-Sarner K, Lerer B, Lombroso P, Kohn Y. Involvement of PTPN5, the gene encoding the striatal-enriched protein tyrosine phosphatase, in schizophrenia and cognition. Psychiatr Genet. 2012;22(4):168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Boehm J. A ‘danse macabre’: tau and Fyn in STEP with amyloid beta to facilitate induction of synaptic depression and excitotoxicity. Eur J Neurosci. 2013;37(12):1925–30.

    Article  PubMed  Google Scholar 

  336. Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty NC, Kurup P, Lombroso PJ. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev. 2012;64(1):65–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Fox JL, Ismail F, Azad A, Ternette N, Leverrier S, Edelmann MJ, Kessler BM, Leigh IM, Jackson S, Storey A. Tyrosine dephosphorylation is required for Bak activation in apoptosis. EMBO J. 2010;29(22):3853–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Zanke B, Suzuki H, Kishihara K, Mizzen L, Minden M, Pawson A, Mak TW. Cloning and expression of an inducible lymphoid-specific, protein tyrosine phosphatase (HePTPase). Eur J Immunol. 1992;22(1):235–9.

    Article  CAS  PubMed  Google Scholar 

  339. Adachi M, Sekiya M, Isobe M, Kumura Y, Ogita Z, Hinoda Y, Imai K, Yachi A. Molecular cloning and chromosomal mapping of a human protein-tyrosine phosphatase LC-PTP. Biochem Biophys Res Commun. 1992;186(3):1607–15.

    Article  CAS  PubMed  Google Scholar 

  340. Oh-hora M, Ogata M, Mori Y, Adachi M, Imai K, Kosugi A, Hamaoka T. Direct suppression of TCR-mediated activation of extracellular signal-regulated kinase by leukocyte protein tyrosine phosphatase, a tyrosine-specific phosphatase. J Immunol. 1999;163(3):1282–8.

    CAS  PubMed  Google Scholar 

  341. Saxena M, Williams S, Gilman J, Mustelin T. Negative regulation of T cell antigen receptor signal transduction by hematopoietic tyrosine phosphatase (HePTP). J Biol Chem. 1998;273(25):15340–4.

    Article  CAS  PubMed  Google Scholar 

  342. Saxena M, Williams S, Tasken K, Mustelin T. Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nat Cell Biol. 1999;1(5):305–11.

    Article  CAS  PubMed  Google Scholar 

  343. Nika K, Hyunh H, Williams S, Paul S, Bottini N, Tasken K, Lombroso PJ, Mustelin T. Haematopoietic protein tyrosine phosphatase (HePTP) phosphorylation by cAMP-dependent protein kinase in T-cells: dynamics and subcellular location. Biochem J. 2004;378(Pt 2):335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Nika K, Charvet C, Williams S, Tautz L, Bruckner S, Rahmouni S, Bottini N, Schoenberger SP, Baier G, Altman A, Mustelin T. Lipid raft targeting of hematopoietic protein tyrosine phosphatase by protein kinase C theta-mediated phosphorylation. Mol Cell Biol. 2006;26(5):1806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Wang PY, Weng J, Lee S, Anderson RG. The N terminus controls sterol binding while the C terminus regulates the scaffolding function of OSBP. J Biol Chem. 2008;283(12):8034–45.

    Article  CAS  PubMed  Google Scholar 

  346. Seo H, Lee IS, Park JE, Park SG, Lee Do H, Park BC, Cho S. Role of protein tyrosine phosphatase non-receptor type 7 in the regulation of TNF-alpha production in RAW 264.7 macrophages. PLoS One. 2013;8(11):e78776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Gronda M, Arab S, Iafrate B, Suzuki H, Zanke BW. Hematopoietic protein tyrosine phosphatase suppresses extracellular stimulus-regulated kinase activation. Mol Cell Biol. 2001;21(20):6851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Pettiford SM, Herbst R. The protein tyrosine phosphatase HePTP regulates nuclear translocation of ERK2 and can modulate megakaryocytic differentiation of K562 cells. Leukemia. 2003;17(2):366–78.

    Article  CAS  PubMed  Google Scholar 

  349. Kim HN, Lee EJ, Jung SC, Lee JY, Chung HW, Kim HL. Genetic variants that affect length/height in infancy/early childhood in Vietnamese-Korean families. J Hum Genet. 2010;55(10):681–90.

    Article  PubMed  Google Scholar 

  350. Fridberg M, Kjellstrom S, Anagnostaki L, Skogvall I, Mustelin T, Wiebe T, Persson JL, Dictor M, Wingren AG. Immunohistochemical analyses of phosphatases in childhood B-cell lymphoma: lower expression of PTEN and HePTP and higher number of positive cells for nuclear SHP2 in B-cell lymphoma cases compared to controls. Pediatr Hematol Oncol. 2008;25(6):528–40.

    Article  CAS  PubMed  Google Scholar 

  351. Zanke B, Squire J, Griesser H, Henry M, Suzuki H, Patterson B, Minden M, Mak TW. A hematopoietic protein tyrosine phosphatase (HePTP) gene that is amplified and overexpressed in myeloid malignancies maps to chromosome 1q32.1. Leukemia. 1994;8(2):236–44.

    CAS  PubMed  Google Scholar 

  352. Eswaran J, von Kries JP, Marsden B, Longman E, Debreczeni JE, Ugochukwu E, Turnbull A, Lee WH, Knapp S, Barr AJ. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Biochem J. 2006;395(3):483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Sergienko E, Xu J, Liu WH, Dahl R, Critton DA, Su Y, Brown BT, Chan X, Yang L, Bobkova EV, Vasile S, Yuan H, Rascon J, Colayco S, Sidique S, Cosford ND, Chung TD, Mustelin T, Page R, Lombroso PJ, Tautz L. Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. ACS Chem Biol. 2012;7(2):367–77.

    Article  CAS  PubMed  Google Scholar 

  354. Chirivi RG, Dilaver G, van de Vorstenbosch R, Wanschers B, Schepens J, Croes H, Fransen J, Hendriks W. Characterization of multiple transcripts and isoforms derived from the mouse protein tyrosine phosphatase gene Ptprr. Genes Cells. 2004;9(10):919–33.

    Article  CAS  PubMed  Google Scholar 

  355. van den Maagdenberg AM, Bachner D, Schepens JT, Peters W, Fransen JA, Wieringa B, Hendriks WJ. The mouse Ptprr gene encodes two protein tyrosine phosphatases, PTP-SL and PTPBR7, that display distinct patterns of expression during neural development. Eur J Neurosci. 1999;11(11):3832–44.

    Article  Google Scholar 

  356. Hendriks WJ, Dilaver G, Noordman YE, Kremer B, Fransen JA. PTPRR protein tyrosine phosphatase isoforms and locomotion of vesicles and mice. Cerebellum. 2009;8(2):80–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Augustine KA, Silbiger SM, Bucay N, Ulias L, Boynton A, Trebasky LD, Medlock ES. Protein tyrosine phosphatase (PC12, Br7, S1) family: expression characterization in the adult human and mouse. Anat Rec. 2000;258(3):221–34.

    Article  CAS  PubMed  Google Scholar 

  358. Noordman YE, Jansen PA, Hendriks WJ. Tyrosine-specific MAPK phosphatases and the control of ERK signaling in PC12 cells. J Mol Signal. 2006;1:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Ogata M, Oh-hora M, Kosugi A, Hamaoka T. Inactivation of mitogen-activated protein kinases by a mammalian tyrosine-specific phosphatase, PTPBR7. Biochem Biophys Res Commun. 1999;256(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  360. Chirivi RG, Noordman YE, Van der Zee CE, Hendriks WJ. Altered MAP kinase phosphorylation and impaired motor coordination in PTPRR deficient mice. J Neurochem. 2007;101(3):829–40.

    Article  CAS  PubMed  Google Scholar 

  361. Erkens M, Bakker B, van Duijn LM, Hendriks WJ, Van der Zee CE. Protein tyrosine phosphatase receptor type R deficient mice exhibit increased exploration in a new environment and impaired novel object recognition memory. Behav Brain Res. 2014;265:111–20.

    Article  CAS  PubMed  Google Scholar 

  362. Shi C, Zhang K, Xu Q. Gender-specific role of the protein tyrosine phosphatase receptor type R gene in major depressive disorder. J Affect Disord. 2012;136(3):591–8.

    Article  CAS  PubMed  Google Scholar 

  363. Nakamura F, Nakamura Y, Maki K, Sato Y, Mitani K. Cloning and characterization of the novel chimeric gene TEL/PTPRR in acute myelogenous leukemia with inv(12)(p13q13). Cancer Res. 2005;65(15):6612–21.

    Article  CAS  PubMed  Google Scholar 

  364. Menigatti M, Cattaneo E, Sabates-Bellver J, Ilinsky VV, Went P, Buffoli F, Marquez VE, Jiricny J, Marra G. The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis. Mol Cancer. 2009;8:124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  365. Laczmanska I, Karpinski P, Bebenek M, Sedziak T, Ramsey D, Szmida E, Sasiadek MM. Protein tyrosine phosphatase receptor-like genes are frequently hypermethylated in sporadic colorectal cancer. J Hum Genet. 2013;58(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  366. Chang CC, Huang RL, Wang HC, Liao YP, Yu MH, Lai HC. High Methylation Rate of LMX1A, NKX6-1, PAX1, PTPRR, SOX1, and ZNF582 Genes in Cervical Adenocarcinoma. Int J Gynecol Cancer. 2014;24(2):201–9.

    Article  PubMed  Google Scholar 

  367. Su PH, Lin YW, Huang RL, Liao YP, Lee HY, Wang HC, Chao TK, Chen CK, Chan MW, Chu TY, Yu MH, Lai HC. Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene. 2013;32(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  368. Lin H, Chen TC, Chang TC, Cheng YM, Chen CH, Chu TY, Hsu ST, Liu CB, Yeh LS, Wen KC, Huang CY, Yu MH. Methylated ZNF582 gene as a marker for triage of women with Pap smear reporting low-grade squamous intraepithelial lesions—A Taiwanese Gynecologic Oncology Group (TGOG) study. 2014. Gynecol Oncol.

    Google Scholar 

  369. Chan SW, Lim CJ, Chen L, Chong YF, Huang C, Song H, Hong W. The Hippo pathway in biological control and cancer development. J Cell Physiol. 2011;226(4):928–39.

    Article  CAS  PubMed  Google Scholar 

  370. Lombroso PJ, Murdoch G, Lerner M. Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proc Natl Acad Sci U S A. 1991;88(16):7242–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Jin YJ, Yu CL, Burakoff SJ. Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity. J Biol Chem. 1999;274(40):28301–7.

    Article  CAS  PubMed  Google Scholar 

  372. Xu Y, Banville D, Zhao HF, Zhao X, Shen SH. Transcriptional activity of the SHP-1 gene in MCF7 cells is differentially regulated by binding of NF-Y factor to two distinct CCAAT-elements. Gene. 2001;269(1-2):141–53.

    Article  CAS  PubMed  Google Scholar 

  373. Nystrom A, Shaik ZP, Gullberg D, Krieg T, Eckes B, Zent R, Pozzi A, Iozzo RV. Role of tyrosine phosphatase SHP-1 in the mechanism of endorepellin angiostatic activity. Blood. 2009;114(23):4897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Yang J, Liu L, He D, Song X, Liang X, Zhao ZJ, Zhou GW. Crystal structure of human protein-tyrosine phosphatase SHP-1. J Biol Chem. 2003;278(8):6516–20.

    Article  CAS  PubMed  Google Scholar 

  375. Wang W, Liu L, Song X, Mo Y, Komma C, Bellamy HD, Zhao ZJ, Zhou GW. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J Cell Biochem. 2011;112(8):2062–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Critton DA, Tortajada A, Stetson G, Peti W, Page R. Structural basis of substrate recognition by hematopoietic tyrosine phosphatase. Biochemistry. 2008;47(50):13336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Critton DA, Tautz L, Page R. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. J Mol Biol. 2011;405(3):619–29.

    Article  CAS  PubMed  Google Scholar 

  378. Maekawa K, Imagawa N, Nagamatsu M, Harada S. Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats. FEBS Lett. 1994;337(2):200–6.

    Article  CAS  PubMed  Google Scholar 

  379. Saras J, Claesson-Welsh L, Heldin CH, Gonez LJ. Cloning and characterization of PTPL1, a protein tyrosine phosphatase with similarities to cytoskeletal-associated proteins. J Biol Chem. 1994;269(39):24082–9.

    CAS  PubMed  Google Scholar 

  380. Hendriks W, Schepens J, Brugman C, Zeeuwen P, Wieringa B. A novel receptor-type protein tyrosine phosphatase with a single catalytic domain is specifically expressed in mouse brain. Biochem J. 1995;305(Pt 2):499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Banville D, Ahmad S, Stocco R, Shen SH. A novel protein-tyrosine phosphatase with homology to both the cytoskeletal proteins of the band 4.1 family and junction-associated guanylate kinases. J Biol Chem. 1994;269(35):22320–7.

    CAS  PubMed  Google Scholar 

  382. van den Berk LC, van Ham MA, te Lindert MM, Walma T, Aelen J, Vuister GW, Hendriks WJ. The interaction of PTP-BL PDZ domains with RIL: an enigmatic role for the RIL LIM domain. Mol Biol Rep. 2004;31(4):203–15.

    Article  PubMed  Google Scholar 

  383. Walma T, Aelen J, Nabuurs SB, Oostendorp M, van den Berk L, Hendriks W, Vuister GW. A closed binding pocket and global destabilization modify the binding properties of an alternatively spliced form of the second PDZ domain of PTP-BL. Structure. 2004;12(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  384. Walma T, Spronk CA, Tessari M, Aelen J, Schepens J, Hendriks W, Vuister GW. Structure, dynamics and binding characteristics of the second PDZ domain of PTP-BL. J Mol Biol. 2002;316(5):1101–10.

    Article  CAS  PubMed  Google Scholar 

  385. Cheng J, Daimaru L, Fennie C, Lasky LA. A novel protein tyrosine phosphatase expressed in lin(lo)CD34(hi)Sca(hi) hematopoietic progenitor cells. Blood. 1996;88(4):1156–67.

    CAS  PubMed  Google Scholar 

  386. Huang K, Sommers CL, Grinberg A, Kozak CA, Love PE. Cloning and characterization of PTP-K1, a novel nonreceptor protein tyrosine phosphatase highly expressed in bone marrow. Oncogene. 1996;13(7):1567–73.

    CAS  PubMed  Google Scholar 

  387. Gandhi TK, Chandran S, Peri S, Saravana R, Amanchy R, Prasad TS, Pandey A. A bioinformatics analysis of protein tyrosine phosphatases in humans. DNA Res. 2005;12(2):79–89.

    Article  CAS  PubMed  Google Scholar 

  388. Matthews RJ, Bowne DB, Flores E, Thomas ML. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol. 1992;12(5):2396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Cloutier JF, Veillette A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 1996;15(18):4909–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  390. Chang HH, Tai TS, Lu B, Iannaccone C, Cernadas M, Weinblatt M, Shadick N, Miaw SC, Ho IC. PTPN22.6, a dominant negative isoform of PTPN22 and potential biomarker of rheumatoid arthritis. PLoS One. 2012;7(3), e33067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Odorizzi G, Katzmann DJ, Babst M, Audhya A, Emr SD. Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci. 2003;116(Pt 10):1893–903.

    Article  CAS  PubMed  Google Scholar 

  392. Sharma E, Lombroso PJ. A neuronal protein tyrosine phosphatase induced by nerve growth factor. J Biol Chem. 1995;270(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  393. Ogata M, Sawada M, Fujino Y, Hamaoka T. cDNA cloning and characterization of a novel receptor-type protein tyrosine phosphatase expressed predominantly in the brain. J Biol Chem. 1995;270(5):2337–43.

    Article  CAS  PubMed  Google Scholar 

  394. Shiozuka K, Watanabe Y, Ikeda T, Hashimoto S, Kawashima H. Cloning and expression of PCPTP1 encoding protein tyrosine phosphatase. Gene. 1995;162(2):279–84.

    Article  CAS  PubMed  Google Scholar 

  395. Szedlacsek SE, Aricescu AR, Fulga TA, Renault L, Scheidig AJ. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation. J Mol Biol. 2001;311(3):557–68.

    Article  CAS  PubMed  Google Scholar 

  396. Floor SL, Dumont JE, Maenhaut C, Raspe E. Hallmarks of cancer: of all cancer cells, all the time? Trends Mol Med. 2012;18(9):509–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiljan J. A. J. Hendriks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hendriks, W.J.A.J., Böhmer, FD. (2016). Non-transmembrane PTPs in Cancer. In: Neel, B., Tonks, N. (eds) Protein Tyrosine Phosphatases in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3649-6_3

Download citation

Publish with us

Policies and ethics