Skip to main content

Microscopy Techniques

  • Chapter
  • First Online:
Advanced Imaging Techniques in Clinical Pathology

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 760 Accesses

Abstract

The microscope is certainly the first equipment that was used by biologists; its invention dates back 400 years, and it has remained an essential tool in biomedical research. Over these four centuries, the microscope has undergone significant improvements: several lenses have been added along the optical path to increase magnification; lens with fewer aberration defects have been produced; and August Köhler developed a technique enabling the proper illumination of a specimen. This kind of illumination generates an even illumination of the sample and prevents the illumination source (lamp filament) from being visible in the specimen image. Modern microscopes are composed of two-stage magnifying systems comprising a separate lens, the objective, and the ocular. The objective is the most important component of an optical microscope because it determines the quality of the final image, and a wide range of objectives are produced to satisfy a large number of applications. An objective is characterized by its numerical aperture, which determines its resolving power. Microscopes are now designed to investigate molecular mechanisms in living cells; for this reason, highly corrected water immersion objectives have been produced. The following microscopy techniques are described in this chapter:

Phase-Contrast Microscopy

Phase-contrast microscopy is a technique that can be applied to unstained biological specimens because it improves the contrast images of transparent specimens without affecting the resolution. It is mainly used to examine dynamic events in living cells. The technique is based on an optical mechanism that converts light phase variations into changes in amplitude, which can be visualized as differences in image contrast.

Differential Interference Contrast

Differential interference contrast is a mechanism for enhancing contrast in transparent specimens; it produces contrast by visually showing the refractive index gradients of different areas of a specimen. The light beam is polarized and then split into two separate beams, the distance of which is equal to the resolution of the objective lens. One beam path is directed through the specimen and the other acts as a reference beam; the two beams are then combined. Since different parts of the specimen have different refractive indices, when the beams are gathered by the second polarizing filter, the vibrational planes of the beams are restored, causing variations in amplitude that are visualized as differences in brightness.

Wide-Field Fluorescence

Wide-field fluorescence or epi-fluorescence microscopy is the most popular technique to acquire both topographical and dynamic information from a specimen. It is based on the irradiation of the whole sample with a light of a specific wavelength. The weaker emitted fluorescence is then separated from the stronger excitation light. The microscope is configured in such a way that only the emission light can reach the detector or eye. The resulting fluorescent image is superimposed with high contrast against a black background. The limits of detection are generally regulated by the contrast between the fluorescent image and the darkness of the background.

Confocal Microscopy

Confocal microscopy can produce images of a reduced degradation because most out-of-focus light from the specimen is removed. To do this, the confocal microscope is equipped with a pinhole located just before the emission filter and the detector in such a way that the irradiated surface of the specimen is on the same focal plane as the pinhole. Therefore, fluorescent light coming from specimen regions other than the focal plane is excluded, increasing image resolution. When the focus changes to a new specimen region along the z axis, the new region becomes confocal to the observed region on the detector. Thus, images of different specimen slices along the z axis can be obtained, and a 3-dimensional image can be reconstituted using appropriate software.

Total Internal Reflection Fluorescence

Total internal reflection fluorescence is based on an optical effect produced by a light beam passing at a high incident angle through glass (i.e., a coverslip) or plastic (i.e., a Petri dish). The difference between refractive indexes between the glass and the water determines the amount of refraction or reflection light at the interface as a function of the beam incident angle. At a specific angle of the glass (or plastic)–water interface, the light beam is totally reflected per a phenomenon described by Snell. The reflected light generates an electromagnetic field with the same frequency as the incident light, called an evanescent wave. Since this wave is produced by a very small (about 200 nm) electromagnetic field, and its intensity decreases exponentially with distance, only fluorophores located near the glass–liquid interface can be excited. This effect produces high-contrast images of the specimen surface with a considerable increase in signal-to-background ratio compared with classic wide-field microscopy.

Förster Resonance Energy Transfer

Förster resonance energy transfer is used to study inter- and intramolecular interactions in living cells. It is based on the transfer of non-radiative energy from a donor to an accepting fluorophore. To obtain a transfer, two essential requisite must exist: (1) the emission spectrum of the donor must overlap the excitation spectrum of the accepting fluorophore (the larger the overlapping area, the larger the transfer); and (2) the distance between the two fluorophores must be in the range of 10 nm as the transfer depends upon the molecular distance at an inverse sixth power. If these conditions are present, the experiment can be designed by setting the excitation of the donor and acquiring the fluorescence at the wavelength emission of the acceptor.

Fluorescence Recovery After Photobleaching

Photobleaching is generally an unwanted phenomenon in fluorescence microscopy because it reduces the intensity of the probe fluorescence. Photobleaching occurs after lengthy irradiation of molecules and seems to be due to the interaction of oxygen with an excited fluorophore. The oxygen radical reacts with the more reactive excited fluorophore and thus quenches the fluorescence. However, this quenching can be used in fluorescence recovery after photobleaching investigations to determine the kinetics of diffusion in living cells. In fact, if a small portion of the cell is subjected to long irradiation, the fluorescence in that area is completely quenched; the diffusion or active movement of molecules within the cell then replaces the bleached fluorophore with unbleached molecules that were located in a different part of the cell, thus restoring fluorescence.

Fluorescence Lifetime Imaging Microscopy

The fluorescence lifetime can be defined as the average time a molecule spends in its excited singlet state before spontaneous emission occurs. Fluorescence lifetime imaging microscopy (FLIM) has some advantages in terms of conventional fluorescence microscopy, because each fluorescent dye has its own lifetime in the excited state. Thus, by detecting differences in lifetimes, it is possible to distinguish dyes with overlapping fluorescent wavelengths or autofluorescence, which can be undistinguishable when using conventional fluorescence microscopy based on spectral characteristics. In addition, FLIM finds its most significant applications in visualizing the environmental changes of a probe in a living cell. Lifetime is independent of dye concentration, photobleaching, light scattering, and excitation light intensity, but the lifetime of a fluorophore can change with solvent change; therefore, fluorescence lifetime imaging enables accurate ion concentration measurement and FRET analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parrilla E, Armengot M, Mata M, Sanchez-Vilchez JM, Cortijo J, Hueso JL, Riera J, Moratal D. Primary ciliary dyskinesia assessment by means of optical flow analysis of phase-contrast microscopy images. Comput Med Imaging Graph. 2014;38:163–70.

    Article  PubMed  Google Scholar 

  2. Kong L, Doona CJ, Setlow P, Li YQ. Monitoring rates and heterogeneity of high-pressure germination of bacillus spores by phase-contrast microscopy of individual spores. Appl Environ Microbiol. 2014;80:345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jaccard N, Griffin LD, Keser A, Macown RJ, Super A, Veraitch FS, Szita N. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images. Biotechnol Bioeng. 2014;111:504–17.

    Article  CAS  PubMed  Google Scholar 

  4. Thirusittampalam K, Hossain MJ, Ghita O, Whelan PF. A novel framework for cellular tracking and mitosis detection in dense phase contrast microscopy images. IEEE J Biomed Health Inform. 2013;17:642–53.

    Article  PubMed  Google Scholar 

  5. Steiger R, Bernet S, Ritsch-Marte M. Mapping of phase singularities with spiral phase contrast microscopy. Opt Express. 2013;21:16282–9.

    Article  PubMed  CAS  Google Scholar 

  6. Su H, Yin Z, Huh S, Kanade T. Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features. Med Image Anal. 2013;17:746–65.

    Article  PubMed  Google Scholar 

  7. Kong Z, Zhu X, Zhang S, Wu J, Luo Y. Phase contrast microscopy of living cells within the whole lens: spatial correlations and morphological dynamics. Mol Vis. 2012;18:2165–73.

    PubMed  PubMed Central  Google Scholar 

  8. Nejati Javaremi A, Unsworth CP, Graham ES. A cell derived active contour (CDAC) method for robust tracking in low frame rate, low contrast phase microscopy—an example: the human hNT astrocyte. PLoS One. 2013;8:e82883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rigaud S, Huang CH, Ahmed S, Lim JH, Racoceanu D. An analysis-synthesis approach for neurosphere modelisation under phase-contrast microscopy. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:3989–92.

    PubMed  Google Scholar 

  10. Liu A, Hao T, Gao Z, Su Y, Yang Z. Nonnegative mixed-norm convex optimization for mitotic cell detection in phase contrast microscopy. Comput Math Methods Med. 2013;2013:176272.

    PubMed  PubMed Central  Google Scholar 

  11. Huh S, Kanade T. Apoptosis detection for non-adherent cells in time-lapse phase contrast microscopy. Med Image Comput Comput Assist Interv. 2013;16:59–66.

    PubMed  Google Scholar 

  12. Hooley EN, Tilley AJ, White JM, Ghiggino KP, Bell TD. Energy transfer in PPV-based conjugated polymers: a defocused widefield fluorescence microscopy study. Phys Chem Chem Phys. 2014;16:7108–14.

    Article  CAS  PubMed  Google Scholar 

  13. Juneau PM, Garnier A, Duchesne C. Selection and tuning of a fast and simple phase-contrast microscopy image segmentation algorithm for measuring myoblast growth kinetics in an automated manner. Microsc Microanal. 2013;19:855–66.

    Article  CAS  PubMed  Google Scholar 

  14. Huh S, Su H, Chen M, Kanade T. Efficient phase contrast microscopy restoration applied for muscle myotube detection. Med Image Comput Comput Assist Interv. 2013;16:420–7.

    PubMed  Google Scholar 

  15. Kim J, An S, Ahn S, Kim B. Depth-variant deconvolution of 3D widefield fluorescence microscopy using the penalized maximum likelihood estimation method. Opt Express. 2013;21:27668–81.

    Article  PubMed  Google Scholar 

  16. Yin Z, Kanade T, Chen M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med Image Anal. 2012;16:1047–62.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Piper T, Piper J. Axial phase-darkfield-contrast (APDC), a new technique for variable optical contrasting in light microscopy. J Microsc. 2012;247:259–68.

    Article  CAS  PubMed  Google Scholar 

  18. Chatterjee S, Pavan Kumar Y. White light differential interference contrast microscope with a Sagnac interferometer. Appl Optics. 2014;53:296–300.

    Article  Google Scholar 

  19. Chen J, Xu Y, Lv X, Lai X, Zeng S. Super-resolution differential interference contrast microscopy by structured illumination. Opt Express. 2013;21:112–21.

    Article  PubMed  Google Scholar 

  20. Chen J, Lv X, Zeng S. Doubling the resolution of spatial-light-modulator-based differential interference contrast microscopy by structured illumination. Opt Lett. 2013;38:3219–22.

    Article  PubMed  Google Scholar 

  21. Battle C, Lautscham L, Schmidt CF. Differential interference contrast microscopy using light-emitting diode illumination in conjunction with dual optical traps. Rev Sci Instrum. 2013;84:053703.

    Article  CAS  PubMed  Google Scholar 

  22. Kim M, Choi Y, Fang-Yen C, Sung Y, Kim K, Dasari RR, Feld MS, Choi W. Three-dimensional differential interference contrast microscopy using synthetic aperture imaging. J Biomed Opt. 2012;17:026003.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Luo Y, Sun W, Gu Y, Wang G, Fang N. Wavelength-dependent differential interference contrast microscopy: multiplexing detection using nonfluorescent nanoparticles. Anal Chem. 2010;82:6675–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Y, Shaked NT, Satterwhite LL, Wax A. Spectral-domain differential interference contrast microscopy. Opt Lett. 2011;36:430–2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McIntyre TJ, Maurer C, Bernet S, Ritsch-Marte M. Differential interference contrast imaging using a spatial light modulator. Opt Lett. 2009;34:2988–90.

    Article  PubMed  Google Scholar 

  26. Yang X, Qin L, Liang W, Wang W, Tan J, Liang P, Xu J, Li S, Cui S. New bone formation and microstructure assessed by combination of confocal laser scanning microscopy and differential interference contrast microscopy. Calcif Tissue Int. 2014;94:338–47.

    Article  CAS  PubMed  Google Scholar 

  27. Oh J, Kim SH, Kim YJ, Lee H, Cho JH, Cho YH, Kim CK, Lee TJ, Lee S, Park KH, Yu HG, Lee HJ, Jun SC, Kim JH. Detection of retinitis pigmentosa by differential interference contrast microscopy. PLoS One. 2014;9:e97170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. McPhee CI, Zoriniants G, Langbein W, Borri P. Measuring the lamellarity of giant lipid vesicles with differential interference contrast microscopy. Biophys J. 2013;105:1414–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baker-Groberg SM, Phillips KG, McCarty OJ. Quantification of volume, mass, and density of thrombus formation using brightfield and differential interference contrast microscopy. J Biomed Opt. 2013;18:16014.

    Article  PubMed  CAS  Google Scholar 

  30. Tsunoda M, Isailovic D, Yeung ES. Real-time three-dimensional imaging of cell division by differential interference contrast microscopy. J Microsc. 2008;232:207–11.

    Article  CAS  PubMed  Google Scholar 

  31. Yenjerla M, Lopus M, Wilson L. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev. Methods Cell Biol. 2010;95:189–206.

    Article  CAS  PubMed  Google Scholar 

  32. Wolf DE. Fundamentals of fluorescence and fluorescence microscopy. Methods Cell Biol. 2013;114:69–97.

    Article  PubMed  Google Scholar 

  33. Webb DJ, Brown CM. Epi-fluorescence microscopy. Methods Mol Biol. 2013;931:29–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Renz M. Fluorescence microscopy-a historical and technical perspective. Cytometry A. 2013;83:767–79.

    Article  PubMed  Google Scholar 

  35. Basic Concepts in Fluorescence. http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html

  36. Fritzky L, Lagunoff D. Advanced methods in fluorescence microscopy. Anal Cell Pathol. 2013;36:5–17.

    Article  CAS  Google Scholar 

  37. Luo W, He K, Xia T, Fang X. Single-molecule monitoring in living cells by use of fluorescence microscopy. Anal Bioanal Chem. 2013;405:43–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tahir M, Khan A, Kaya H. Protein subcellular localization in human and hamster cell lines: employing local ternary patterns of fluorescence microscopy images. J Theor Biol. 2014;340:85–95.

    Article  CAS  PubMed  Google Scholar 

  39. Duheron V, Moreau M, Collin B, Sali W, Bernhard C, Goze C, Gautier T, Pais de Barros JP, Deckert V, Brunotte F, Lagrost L, Denat F. Dual labeling of lipopolysaccharides for SPECT-CT imaging and fluorescence microscopy. ACS Chem Biol. 2014;9:656–62.

    Article  CAS  PubMed  Google Scholar 

  40. Ujihara Y, Nakamura M, Miyazaki H, Wada S. Segmentation and morphometric analysis of cells from fluorescence microscopy images of cytoskeletons. Comput Math Methods Med. 2013;2013:381356.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tapley A, Switz N, Reber C, Davis JL, Miller C, Matovu JB, Worodria W, Huang L, Fletcher DA, Cattamanchi A. Mobile digital fluorescence microscopy for diagnosis of tuberculosis. J Clin Microbiol. 2013;51:1774–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Scholz D, Fortsch J, Bockler S, Klecker T, Westermann B. Analyzing membrane dynamics with live cell fluorescence microscopy with a focus on yeast mitochondria. Methods Mol Biol. 2013;1033:275–83.

    Article  CAS  PubMed  Google Scholar 

  43. Yan Y, Petchprayoon C, Mao S, Marriott G. Reversible optical control of cyanine fluorescence in fixed and living cells: optical lock-in detection immunofluorescence imaging microscopy. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Furia L, Pelicci PG, Faretta M. A computational platform for robotized fluorescence microscopy (I): high-content image-based cell-cycle analysis. Cytometry A. 2013;83:333–43.

    Article  PubMed  CAS  Google Scholar 

  45. Furia L, Pelicci PG, Faretta M. A computational platform for robotized fluorescence microscopy (II): DNA damage, replication, checkpoint activation, and cell cycle progression by high-content high-resolution multiparameter image-cytometry. Cytometry A. 2013;83:344–55.

    Article  PubMed  CAS  Google Scholar 

  46. Laser Scanning Confocal Microscopy. http://micro.magnet.fsu.edu/primer/techniques/confocal/index.html

  47. Ragazzi M, Piana S, Longo C, Castagnetti F, Foroni M, Ferrari G, Gardini G, Pellacani G. Fluorescence confocal microscopy for pathologists. Mod Pathol. 2014;27:460–71.

    CAS  PubMed  Google Scholar 

  48. Herberich G, Windoffer R, Leube RE, Aach T. Signal and noise modeling in confocal laser scanning fluorescence microscopy. Med Image Comput Comput Assist Interv. 2012;15:381–8.

    PubMed  Google Scholar 

  49. Wu Y, Zinchuk V, Grossenbacher-Zinchuk O, Stefani E. Critical evaluation of quantitative colocalization analysis in confocal fluorescence microscopy. Interdiscip Sci. 2012;4:27–37.

    Article  PubMed  Google Scholar 

  50. Balestrieri ML, Giovane A, Milone L, Servillo L. Endothelial progenitor cells express PAF receptor and respond to PAF via Ca(2+)-dependent signaling. Biochim Biophys Acta. 2010;1801:1123–32.

    Article  CAS  PubMed  Google Scholar 

  51. Coxon FP. Fluorescence imaging of osteoclasts using confocal microscopy. Methods Mol Biol. 2012;816:401–24.

    Article  CAS  PubMed  Google Scholar 

  52. Kress A, Wang X, Ranchon H, Savatier J, Rigneault H, Ferrand P, Brasselet S. Mapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy. Biophys J. 2013;105:127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feola A, Cimini A, Migliucci F, Iorio R, Zuchegna C, Rothenberger R, Cito L, Porcellini A, Unteregger G, Tombolini V, Giordano A, Di Domenico M. The inhibition of p85alphaPI3KSer83 phosphorylation prevents cell proliferation and invasion in prostate cancer cells. J Cell Biochem. 2013;114:2114–9.

    Article  CAS  PubMed  Google Scholar 

  54. Cosentino C, Di Domenico M, Porcellini A, Cuozzo C, De Gregorio G, Santillo MR, Agnese S, Di Stasio R, Feliciello A, Migliaccio A, Avvedimento EV. p85 regulatory subunit of PI3K mediates cAMP-PKA and estrogens biological effects on growth and survival. Oncogene. 2007;26:2095–103.

    Article  CAS  PubMed  Google Scholar 

  55. Longo C, Rajadhyaksha M, Ragazzi M, Nehal K, Gardini S, Moscarella E, Lallas A, Zalaudek I, Piana S, Argenziano G, Pellacani G. Evaluating ex vivo fluorescence confocal microscopy images of basal cell carcinomas in Mohs excised tissue. Br J Dermatol. 2014;171(3):561–70.

    Article  CAS  PubMed  Google Scholar 

  56. Dobbs JL, Ding H, Benveniste AP, Kuerer HM, Krishnamurthy S, Yang W, Richards-Kortum R. Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue. J Biomed Opt. 2013;18:106016.

    Article  PubMed  Google Scholar 

  57. Bennassar A, Carrera C, Puig S, Vilalta A, Malvehy J. Fast evaluation of 69 basal cell carcinomas with ex vivo fluorescence confocal microscopy: criteria description, histopathological correlation, and interobserver agreement. JAMA Dermatol. 2013;149:839–47.

    Article  PubMed  Google Scholar 

  58. De Gregorio G, Coppa A, Cosentino C, et al. The p85 regulatory subunit of PI3K mediates TSHcAMP-PKA growth and survival signals. Oncogene. 2007;26:2039–47.

    Article  PubMed  CAS  Google Scholar 

  59. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24:7455–64.

    Article  CAS  PubMed  Google Scholar 

  60. Vega FM, Fruhwirth G, Ng T, Ridley AJ. RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol. 2011;193:655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Total Internal Reflection Fluorescence Microscopy. http://micro.magnet.fsu.edu/primer/techniques/fluorescence/tirf/tirfhome.html

  62. Brunstein M, Teremetz M, Herault K, Tourain C, Oheim M. Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light. Biophys J. 2014;106:1020–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brunstein M, Herault K, Oheim M. Eliminating unwanted far-field excitation in objective-type TIRF. Part II. Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning. Biophys J. 2014;106:1044–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lane RS, Macpherson AN, Magennis SW. Signal enhancement in multiphoton TIRF microscopy by shaping of broadband femtosecond pulses. Opt Express. 2012;20:25948–59.

    Article  CAS  PubMed  Google Scholar 

  65. Johnson DS, Jaiswal JK, Simon S. Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events. Curr Protoc Cytom. 2012;Chapter 12, Unit 12 29.

    Google Scholar 

  66. Liang L, Shen H, De Camilli P, Toomre DK, Duncan JS. An expectation maximization based method for subcellular particle tracking using multi-angle TIRF microscopy. Med Image Comput Comput Assist Interv. 2011;14:629–36.

    PubMed  PubMed Central  Google Scholar 

  67. Oheim M. Quantitative imaging of single-organelle and single-molecule dynamics near the plasma membrane using a combination of spinning TIRF and virtual supercritical-angle detection. Biomed Tech. 2012. doi:10.1515/bmt-2012-4565.

    Google Scholar 

  68. Charlton C, Gubala V, Gandhiraman RP, Wiechecki J, Le NC, Coyle C, Daniels S, Maccraith BD, Williams DE. TIRF microscopy as a screening method for non-specific binding on surfaces. J Colloid Interface Sci. 2011;354:405–9.

    Article  CAS  PubMed  Google Scholar 

  69. Parhamifar L, Moghimi SM. Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction. Methods Mol Biol. 2012;906:473–82.

    CAS  PubMed  Google Scholar 

  70. Loder MK, Tsuboi T, Rutter GA. Live-cell imaging of vesicle trafficking and divalent metal ions by total internal reflection fluorescence (TIRF) microscopy. Methods Mol Biol. 2013;950:13–26.

    CAS  PubMed  Google Scholar 

  71. Leslie K, Galjart N. Going solo: measuring the motions of microtubules with an in vitro assay for TIRF microscopy. Methods Cell Biol. 2013;115:109–24.

    Article  PubMed  Google Scholar 

  72. Telley IA, Bieling P, Surrey T. Reconstitution and quantification of dynamic microtubule end tracking in vitro using TIRF microscopy. Methods Mol Biol. 2011;777:127–45.

    Article  CAS  PubMed  Google Scholar 

  73. Ross JA, Digman MA, Wang L, Gratton E, Albanesi JP, Jameson DM. Oligomerization state of dynamin 2 in cell membranes using TIRF and number and brightness analysis. Biophys J. 2011;100:L15–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matz M, Schumacher K, Hatlapatka K, Lorenz D, Baumann K, Rustenbeck I. Observer-independent quantification of insulin granule exocytosis and pre-exocytotic mobility by TIRF microscopy. Microsc Microanal. 2014;20:206–18.

    Article  CAS  PubMed  Google Scholar 

  75. Akopova I, Tatur S, Grygorczyk M, Luchowski R, Gryczynski I, Gryczynski Z, Borejdo J, Grygorczyk R. Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells. Purinergic Signal. 2012;8:59–70.

    Article  CAS  PubMed  Google Scholar 

  76. Sidaway P, Teramoto N. L-type Ca2+ channel sparklets revealed by TIRF microscopy in mouse urinary bladder smooth muscle. PLoS One. 2014;9:e93803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ramachandran S, Arce FT, Patel NR, Quist AP, Cohen DA, Lal R. Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy. Sci Rep. 2014;4:4424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Pietraszewska-Bogiel A, Gadella TW. FRET microscopy: from principle to routine technology in cell biology. J Microsc. 2011;241:111–8.

    Article  CAS  PubMed  Google Scholar 

  79. Sun Y, Wallrabe H, Seo SA, Periasamy A. FRET microscopy in 2010: the legacy of Theodor Forster on the 100th anniversary of his birth. Chemphyschem. 2011;12:462–74.

    Article  CAS  PubMed  Google Scholar 

  80. Giron MD, Salto R. From green to blue: site-directed mutagenesis of the green fluorescent protein to teach protein structure-function relationships. Biochem Mol Biol Educ. 2011;39:309–15.

    Article  CAS  PubMed  Google Scholar 

  81. Hoppe AD, Scott BL, Welliver TP, Straight SW, Swanson JA. N-way FRET microscopy of multiple protein-protein interactions in live cells. PLoS One. 2013;8:e64760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kruger AC, Birkedal V. Single molecule FRET data analysis procedures for FRET efficiency determination: probing the conformations of nucleic acid structures. Methods. 2013;64:36–42.

    Article  CAS  PubMed  Google Scholar 

  83. Simkova E, Stanek D. Probing nucleic acid interactions and Pre-mRNA splicing by Forster resonance energy transfer (FRET) microscopy. Int J Mol Sci. 2012;13:14929–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Renciuk D, Zhou J, Beaurepaire L, Guedin A, Bourdoncle A, Mergny JL. A FRET-based screening assay for nucleic acid ligands. Methods. 2012;57:122–8.

    Article  CAS  PubMed  Google Scholar 

  85. Guo Q, He Y, Lu HP. Manipulating and probing enzymatic conformational fluctuations and enzyme-substrate interactions by single-molecule FRET-magnetic tweezers microscopy. Phys Chem Chem Phys. 2014;16(26):13052–8.

    Article  CAS  PubMed  Google Scholar 

  86. Canclini L, Wallrabe H, Di Paolo A, Kun A, Calliari A, Sotelo-Silveira JR, Sotelo JR. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy. Methods. 2014;66:153–61.

    Article  CAS  PubMed  Google Scholar 

  87. Ziomkiewicz I, Loman A, Klement R, Fritsch C, Klymchenko AS, Bunt G, Jovin TM, Arndt-Jovin DJ. Dynamic conformational transitions of the EGF receptor in living mammalian cells determined by FRET and fluorescence lifetime imaging microscopy. Cytometry A. 2013;83:794–805.

    Article  PubMed  CAS  Google Scholar 

  88. Wallrabe H, Cai Y, Sun Y, Periasamy A, Luzes R, Fang X, Kan HM, Cameron LC, Schafer DA, Bloom GS. IQGAP1 interactome analysis by in vitro reconstitution and live cell 3-color FRET microscopy. Cytoskeleton. 2013;70:819–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Prasad S, Zeug A, Ponimaskin E. Analysis of receptor-receptor interaction by combined application of FRET and microscopy. Methods Cell Biol. 2013;117:243–65.

    Article  CAS  PubMed  Google Scholar 

  90. Grecco HE, Bastiaens PI. Quantifying cellular dynamics by fluorescence resonance energy transfer (FRET) microscopy. Curr Protoc Neurosci. 2013;Chapter 5, Unit 5 22.

    Google Scholar 

  91. Sprenger JU, Perera RK, Gotz KR, Nikolaev VO. FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors. J Vis Exp. 2012;e4081.

    Google Scholar 

  92. Roberts SK, Tynan CJ, Winn M, Martin-Fernandez ML. Investigating extracellular in situ EGFR structure and conformational changes using FRET microscopy. Biochem Soc Trans. 2012;40:189–94.

    Article  CAS  PubMed  Google Scholar 

  93. Padilla-Parra S, Tramier M. FRET microscopy in the living cell: different approaches, strengths and weaknesses. Bioessays. 2012;34:369–76.

    Article  PubMed  Google Scholar 

  94. Ferrari ML, Gomez GA, Maccioni HJ. Spatial organization and stoichiometry of N-terminal domain-mediated glycosyltransferase complexes in Golgi membranes determined by fret microscopy. Neurochem Res. 2012;37:1325–34.

    Article  CAS  PubMed  Google Scholar 

  95. Day RN, Davidson MW. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. Bioessays. 2012;34:341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Goncalves JT, Stuhmer W. Calmodulin interaction with hEAG1 visualized by FRET microscopy. PLoS One. 2010;5:e10873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 2012;17:4047–132.

    Article  CAS  PubMed  Google Scholar 

  98. Yang J, Kohler K, Davis DM, Burroughs NJ. An improved strip FRAP method for estimating diffusion coefficients: correcting for the degree of photobleaching. J Microsc. 2010;238:240–53.

    Article  CAS  PubMed  Google Scholar 

  99. Kang M, Day CA, DiBenedetto E, Kenworthy AK. A quantitative approach to analyze binding diffusion kinetics by confocal FRAP. Biophys J. 2010;99:2737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kang M, Day CA, Kenworthy AK, DiBenedetto E. Simplified equation to extract diffusion coefficients from confocal FRAP data. Traffic. 2012;13:1589–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiong R, Deschout H, Demeester J, De Smedt SC, Braeckmans K. Rectangle FRAP for measuring diffusion with a laser scanning microscope. Methods Mol Biol. 2014;1076:433–41.

    Article  CAS  PubMed  Google Scholar 

  102. Wachsmuth M. Molecular diffusion and binding analyzed with FRAP. Protoplasma. 2014;251:373–82.

    Article  PubMed  Google Scholar 

  103. Deschout H, Raemdonck K, Demeester J, De Smedt SC, Braeckmans K. FRAP in pharmaceutical research: practical guidelines and applications in drug delivery. Pharm Res. 2014;31:255–70.

    Article  CAS  PubMed  Google Scholar 

  104. Groeneweg FL, van Royen ME, Fenz S, Keizer VI, Geverts B, Prins J, de Kloet ER, Houtsmuller AB, Schmidt TS, Schaaf MJ. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP. PLoS One. 2014;9:e90532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Watanabe N, Yamashiro S, Vavylonis D, Kiuchi T. Molecular viewing of actin polymerizing actions and beyond: combination analysis of single-molecule speckle microscopy with modeling, FRAP and s-FDAP (sequential fluorescence decay after photoactivation). Dev Growth Differ. 2013;55:508–14.

    Article  CAS  PubMed  Google Scholar 

  106. Schneider K, Fuchs C, Dobay A, Rottach A, Qin W, Wolf P, Alvarez-Castro JM, Nalaskowski MM, Kremmer E, Schmid V, Leonhardt H, Schermelleh L. Dissection of cell cycle-dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res. 2013;41:4860–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bougault C, Cueru L, Bariller J, Malbouyres M, Paumier A, Aszodi A, Berthier Y, Mallein-Gerin F, Trunfio-Sfarghiu AM. Alteration of cartilage mechanical properties in absence of beta1 integrins revealed by rheometry and FRAP analyses. J Biomech. 2013;46:1633–40.

    Article  PubMed  Google Scholar 

  108. Hardy LR. Fluorescence recovery after photobleaching (FRAP) with a focus on F-actin. Curr Protoc Neurosci. 2012;Chapter 2, Unit 2 17.

    Google Scholar 

  109. Day CA, Kraft LJ, Kang M, Kenworthy AK. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP). Curr Protoc Cytom. 2012;Chapter 2, Unit 2 19.

    Google Scholar 

  110. Aguila B, Simaan M, Laporte SA. Study of G protein-coupled receptor/beta-arrestin interactions within endosomes using FRAP. Methods Mol Biol. 2011;756:371–80.

    Article  CAS  PubMed  Google Scholar 

  111. Bošković A, Eid A, Pontabry J, Ishiuchi T, Spiegelhalter C, Raghu Ram EV, Meshorer E, Torres-Padilla ME. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 2014;28(10):1042–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Bernas T, Brutkowski W, Zarębski M, Dobrucki J. Spatial heterogeneity of dynamics of H1 linker histone. Eur Biophys J. 2014;43:287–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, Blisnick T, Huet D, Perrot S, Santi-Rocca J, Duchateau M, Hourdel V, Rousselle JC, Cayet N, Namane A, Chamot-Rooke J, Bastin P. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localisation and dynamics. Mol Cell Proteomics. 2014;13(7):1769–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pande P, Jo JA. Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method. IEEE Trans BioMed Eng. 2011;58:172–81.

    Article  PubMed  Google Scholar 

  115. Chen Y, Saulnier JL, Yellen G, Sabatini BL. A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front Pharmacol. 2014;5:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Schmitt FJ, Thaa B, Junghans C, Vitali M, Veit M, Friedrich T. eGFP-pHsens as a highly sensitive fluorophore for cellular pH determination by fluorescence lifetime imaging microscopy (FLIM). Biochim Biophys Acta. 2014.

    Google Scholar 

  117. Paredes JM, Giron MD, Ruedas-Rama MJ, Orte A, Crovetto L, Talavera EM, Salto R, Alvarez-Pez JM. Real-time phosphate sensing in living cells using fluorescence lifetime imaging microscopy (FLIM). J Phys Chem B. 2013;117:8143–9.

    Article  CAS  PubMed  Google Scholar 

  118. Morton PE, Parsons M. Measuring FRET using time-resolved FLIM. Methods Mol Biol. 2011;769:403–13.

    Article  CAS  PubMed  Google Scholar 

  119. Oliveira AF, Yasuda R. An improved Ras sensor for highly sensitive and quantitative FRET-FLIM imaging. PloS one. 2013;8:e52874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schuermann KC, Grecco HE. flatFLIM: enhancing the dynamic range of frequency domain FLIM. Opt Express. 2012;20:20730–41.

    Article  PubMed  Google Scholar 

  121. Pepperkok R, Squire A, Geley S, Bastiaens PI. Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol. 1999;9:269–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Feola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feola, A., Cito, L., Di Carlo, A., Giovane, A., Di Domenico, M. (2016). Microscopy Techniques. In: Sacerdoti, F., Giordano, A., Cavaliere, C. (eds) Advanced Imaging Techniques in Clinical Pathology. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3469-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3469-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3467-6

  • Online ISBN: 978-1-4939-3469-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics