Skip to main content

Analyzing Membrane Dynamics with Live Cell Fluorescence Microscopy with a Focus on Yeast Mitochondria

  • Protocol
  • First Online:
Membrane Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1033))

Abstract

With the availability of increasing numbers of fluorescent protein variants and state-of-the-art imaging techniques, live cell microscopy has become a standard procedure in modern cell biology. Fluorescent markers are used to visualize the dynamic processes that take place in living cells, including the behavior of membrane-bound organelles. Here, we provide two examples of how we analyze the membrane dynamics of mitochondria in living yeast cells using wide field and confocal microscopy: (1) Long-term observation of mitochondrial shape changes using mitochondria-targeted fluorescent proteins and (2) monitoring the behavior of individual mitochondria using a mitochondria-targeted version of a photoconvertible fluorescent protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86

    Article  PubMed  CAS  Google Scholar 

  2. Merz S, Hammermeister M, Altmann K, Dürr M, Westermann B (2007) Molecular machinery of mitochondrial dynamics in yeast. Biol Chem 388:917–926

    Article  PubMed  CAS  Google Scholar 

  3. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  PubMed  CAS  Google Scholar 

  4. Altmann K, Dürr M, Westermann B (2007) Saccharomyces cerevisiae as a model organism to study mitochondrial biology: general considerations and basic procedures. Methods Mol Biol 372:81–90

    Article  PubMed  CAS  Google Scholar 

  5. Swayne TC, Gay AC, Pon LA (2007) Fluorescence imaging of mitochondria in yeast. Methods Mol Biol 372:433–459

    Article  PubMed  CAS  Google Scholar 

  6. Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427

    Article  PubMed  CAS  Google Scholar 

  7. Swayne TC, Gay AC, Pon LA (2007) Visualization of mitochondria in budding yeast. Methods Cell Biol 80:591–626

    Article  PubMed  CAS  Google Scholar 

  8. Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8:1233–1242

    Article  PubMed  CAS  Google Scholar 

  9. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200

    Article  PubMed  CAS  Google Scholar 

  10. Legros F, Lombes A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343–4354

    Article  PubMed  CAS  Google Scholar 

  11. Mattenberger Y, James DI, Martinou JC (2003) Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett 538:53–59

    Article  PubMed  CAS  Google Scholar 

  12. Ishihara N, Jofuku A, Eura Y, Mihara K (2003) Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun 301:891–898

    Article  PubMed  CAS  Google Scholar 

  13. Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755

    Article  PubMed  CAS  Google Scholar 

  14. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  PubMed  CAS  Google Scholar 

  15. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–891

    Article  PubMed  CAS  Google Scholar 

  16. Jakobs S, Schauss AC, Hell SW (2003) Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen. FEBS Lett 554:194–200

    Article  PubMed  CAS  Google Scholar 

  17. Karbowski M, Arnoult D, Chen H, Chan DC, Smith CL, Youle RJ (2004) Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol 164:493–499

    Article  PubMed  CAS  Google Scholar 

  18. Molina AJA, Shirihai OS (2009) Monitoring mitochondrial dynamics with photoactivatable green fluorescent protein. Methods Enzymol 457:289–304

    Article  PubMed  CAS  Google Scholar 

  19. Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101:7805–7808

    Article  PubMed  CAS  Google Scholar 

  20. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  PubMed  CAS  Google Scholar 

  21. Keppler-Ross S, Noffz C, Dean N (2008) A new purple fluorescent color marker for genetic studies in Saccharomyces cerevisiae and Candida albicans. Genetics 179:705–710

    Article  PubMed  CAS  Google Scholar 

  22. Sikorski RS, Hieter P (1989) A system of shuttle vectors and host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  23. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2:2024–2032

    Article  PubMed  CAS  Google Scholar 

  24. Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31:1076–1078

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft through grants We 2174/4-2 and 5-1.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scholz, D., Förtsch, J., Böckler, S., Klecker, T., Westermann, B. (2013). Analyzing Membrane Dynamics with Live Cell Fluorescence Microscopy with a Focus on Yeast Mitochondria. In: Rapaport, D., Herrmann, J. (eds) Membrane Biogenesis. Methods in Molecular Biology, vol 1033. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-487-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-487-6_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-486-9

  • Online ISBN: 978-1-62703-487-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics