Skip to main content
Log in

Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Nucleotide release constitutes the first step of the purinergic signaling cascade, but its underlying mechanisms remain incompletely understood. In alveolar A549 cells much of the experimental data is consistent with Ca2+-regulated vesicular exocytosis, but definitive evidence for such a release mechanism is missing, and alternative pathways have been proposed. In this study, we examined ATP secretion from A549 cells by total internal reflection fluorescence microscopy to directly visualize ATP-loaded vesicles and their fusion with the plasma membrane. A549 cells were labeled with quinacrine or Bodipy-ATP, fluorescent markers of intracellular ATP storage sites, and time-lapse imaging of vesicles present in the evanescent field was undertaken. Under basal conditions, individual vesicles showed occasional quasi-instantaneous loss of fluorescence, as expected from spontaneous vesicle fusion with the plasma membrane and dispersal of its fluorescent cargo. Hypo-osmotic stress stimulation (osmolality reduction from 316 to 160 mOsm) resulted in a transient, several-fold increment of exocytotic event frequency. Lowering the temperature from 37°C to 20°C dramatically diminished the fraction of vesicles that underwent exocytosis during the 2-min stimulation, from ~40% to ≤1%, respectively. Parallel ATP efflux experiments with luciferase bioluminescence assay revealed that pharmacological interference with vesicular transport (brefeldin, monensin), or disruption of the cytoskeleton (nocodazole, cytochalasin), significantly suppressed ATP release (by up to ~80%), whereas it was completely blocked by N-ethylmaleimide. Collectively, our data demonstrate that regulated exocytosis of ATP-loaded vesicles likely constitutes a major pathway of hypotonic stress-induced ATP secretion from A549 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burnstock G, Fredholm BB, North RA, Verkhratsky A (2010) The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 199:93–147

    Article  CAS  Google Scholar 

  2. Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):S172–S181

    PubMed  CAS  Google Scholar 

  3. Burnstock G (2008) Unresolved issues and controversies in purinergic signalling. J Physiol 586:3307–3312

    Article  PubMed  CAS  Google Scholar 

  4. Okada SF, Nicholas RA, Kreda SM, Lazarowski ER, Boucher RC (2006) Physiological regulation of ATP release at the apical surface of human airway epithelia. J Biol Chem 281:22992–23002

    Article  PubMed  CAS  Google Scholar 

  5. Button B, Picher M, Boucher RC (2007) Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia. J Physiol 580:577–592

    Article  PubMed  CAS  Google Scholar 

  6. Grygorczyk R, Hanrahan JW (1997) CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli. Am J Physiol 272:C1058–C1066

    PubMed  CAS  Google Scholar 

  7. Vlahakis NE, Hubmayr RD (2003) Response of alveolar cells to mechanical stress. Curr Opin Crit Care 9:2–8

    Article  PubMed  Google Scholar 

  8. Liu M, Post M (2000) Invited review: mechanochemical signal transduction in the fetal lung. J Appl Physiol 89:2078–2084

    PubMed  CAS  Google Scholar 

  9. Edwards YS (2001) Stretch stimulation: its effects on alveolar type II cell function in the lung. Comp Biochem Physiol A Mol Integr Physiol 129:245–260

    Article  PubMed  CAS  Google Scholar 

  10. Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243:359–366

    Article  PubMed  CAS  Google Scholar 

  11. Shapiro DL, Nardone LL, Rooney SA, Motoyama EK, Munoz JL (1978) Phospholipid biosynthesis and secretion by a cell line (A549) which resembles type II aleveolar epithelial cells. Biochim Biophys Acta 530:197–207

    PubMed  CAS  Google Scholar 

  12. Boudreault F, Grygorczyk R (2004) Cell swelling-induced ATP release is tightly dependent on intracellular calcium elevations. J Physiol 561:499–513

    Article  PubMed  CAS  Google Scholar 

  13. Tatur S, Kreda S, Lazarowski E, Grygorczyk R (2008) Calcium-dependent release of adenosine and uridine nucleotides from A549 cells. Purinergic Signal 4:139–146

    Article  PubMed  CAS  Google Scholar 

  14. Ramsingh R, Grygorczyk A, Solecki A, Cherkaoui LS, Berthiaume Y, Grygorczyk R (2011) Cell deformation at the air-liquid interface induces Ca2+-dependent ATP release from lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 300:L587–L595

    Article  PubMed  CAS  Google Scholar 

  15. Seminario-Vidal L, Okada SF, Sesma JI, Kreda SM, Van Heusden CA, Zhu Y, Jones LC, O’Neal WK, Penuela S, Laird DW, Boucher RC, Lazarowski ER (2011) RHO signaling regulates pannexin 1-mediated ATP release from airway epithelia. J Biol Chem 286(30):26277–26286

    Article  PubMed  CAS  Google Scholar 

  16. Seminario-Vidal L, Kreda S, Jones L, O’neal W, Trejo J, Boucher RC, Lazarowski ER (2009) Thrombin promotes release of ATP from lung epithelial cells through coordinated activation of rho- and Ca2+-dependent signaling pathways. J Biol Chem 284:20638–20648

    Article  PubMed  CAS  Google Scholar 

  17. Ransford GA, Fregien N, Qiu F, Dahl G, Conner GE, Salathe M (2009) Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir Cell Mol Biol 41:525–534

    Article  PubMed  CAS  Google Scholar 

  18. van der Ploeg M, Ploem JS (1973) Filter combinations and light sources for fluorescence microscopy of quinacrine mustard or quinacrine stained chromosomes. Histochemie 33:61–70

    Article  PubMed  Google Scholar 

  19. Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38:900–908

    Article  PubMed  CAS  Google Scholar 

  20. Striedinger K, Meda P, Scemes E (2007) Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia 55:652–662

    Article  PubMed  Google Scholar 

  21. Tatur S, Groulx N, Orlov SN, Grygorczyk R (2007) Ca2+-dependent ATP release from A549 cells involves synergistic autocrine stimulation by coreleased uridine nucleotides. J Physiol 584:419–435

    Article  PubMed  CAS  Google Scholar 

  22. Mitchell CH, Carre DA, McGlinn AM, Stone RA, Civan MM (1998) A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc Natl Acad Sci USA 95:7174–7178

    Article  PubMed  CAS  Google Scholar 

  23. Sorensen CE, Novak I (2001) Visualization of ATP release in pancreatic acini in response to cholinergic stimulus. Use of fluorescent probes and confocal microscopy. J Biol Chem 276:32925–32932

    Article  PubMed  CAS  Google Scholar 

  24. Yegutkin GG, Mikhailov A, Samburski SS, Jalkanen S (2006) The detection of micromolar pericellular ATP pool on lymphocyte surface by using lymphoid ecto-adenylate kinase as intrinsic ATP sensor. Mol Biol Cell 17:3378–3385

    Article  PubMed  CAS  Google Scholar 

  25. Lazarowski ER, Tarran R, Grubb BR, Van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864

    Article  PubMed  CAS  Google Scholar 

  26. Kreda SM, Okada SF, Van Heusden CA, O’Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER (2007) Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. Journal of Physiology-London 584:245–259

    Article  CAS  Google Scholar 

  27. Rooney SA (2001) Regulation of surfactant secretion. Comp Biochem Physiol A Mol Integr Physiol 129:233–243

    Article  PubMed  CAS  Google Scholar 

  28. Praetorius HA, Leipziger J (2009) ATP release from non-excitable cells. Purinergic Signal 5:433–446

    Article  PubMed  CAS  Google Scholar 

  29. Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM (2011) Molecular mechanisms of purine and pyrimidine nucleotide release. Adv Pharmacol 61:221–261

    Article  PubMed  CAS  Google Scholar 

  30. Reisin IL, Prat AG, Abraham EH, Amara JF, Gregory RJ, Ausiello DA, Cantiello HF (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem 269:20584–20591

    PubMed  CAS  Google Scholar 

  31. Sugita M, Yue Y, Foskett JK (1998) CFTR Cl channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J 17:898–908

    Article  PubMed  CAS  Google Scholar 

  32. Grygorczyk R, Hanrahan JW (1997) Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate [response]. Science 275:1325–1326

    CAS  Google Scholar 

  33. Grygorczyk R, Tabcharani JA, Hanrahan JW (1996) CFTR channels expressed in CHO cells do not have detectable ATP conductance. J Membr Biol 151:139–148

    Article  PubMed  CAS  Google Scholar 

  34. Hazama A, Shimizu T, Ando-Akatsuka Y, Hayashi S, Tanaka S, Maeno E, Okada Y (1999) Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with volume-sensitive Cl channels. J Gen Physiol 114:525–533

    Article  PubMed  CAS  Google Scholar 

  35. Li C, Ramjeesingh M, Bear CE (1996) Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J Biol Chem 271:11623–11626

    Article  PubMed  CAS  Google Scholar 

  36. Reddy MM, Quinton PM, Haws C, Wine JJ, Grygorczyk R, Tabcharani JA, Hanrahan JW, Gunderson KL, Kopito RR (1996) Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271:1876–1879

    Article  PubMed  CAS  Google Scholar 

  37. Watt WC, Lazarowski ER, Boucher RC (1998) Cystic fibrosis transmembrane regulator-independent release of ATP. Its implications for the regulation of P2Y2 receptors in airway epithelia. J Biol Chem 273:14053–14058

    Article  PubMed  CAS  Google Scholar 

  38. Boudreault F, Grygorczyk R (2002) Cell swelling-induced ATP release and gadolinium-sensitive channels. Am J Physiol Cell Physiol 282:C219–C226

    PubMed  CAS  Google Scholar 

  39. Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G (1997) Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 68:69–119

    Article  PubMed  CAS  Google Scholar 

  40. Strange K, Emma F, Jackson PS (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol 270:C711–C730

    PubMed  CAS  Google Scholar 

  41. Hisadome K, Koyama T, Kimura C, Droogmans G, Ito Y, Oike M (2002) Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J Gen Physiol 119:511–520

    Article  PubMed  CAS  Google Scholar 

  42. Wang Y, Roman R, Lidofsky SD, Fitz JG (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci USA 93:12020–12025

    Article  PubMed  CAS  Google Scholar 

  43. Fields RD, Ni Y (2010) Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci Signal 3:ra73

    Article  PubMed  Google Scholar 

  44. Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic Signal 1:311–328

    Article  PubMed  CAS  Google Scholar 

  45. Dutta AK, Okada Y, Sabirov RZ (2002) Regulation of an ATP-conductive large-conductance anion channel and swelling-induced ATP release by arachidonic acid. J Physiol 542:803–816

    Article  PubMed  CAS  Google Scholar 

  46. Sabirov RZ, Okada Y (2009) The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci 59:3–21

    Article  PubMed  CAS  Google Scholar 

  47. Rostovtseva T, Colombini M (1997) VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J 72:1954–1962

    Article  PubMed  CAS  Google Scholar 

  48. Bathori G, Parolini I, Szabo I, Tombola F, Messina A, Oliva M, Sargiacomo M, de Pinto V, Zoratti M (2000) Extramitochondrial porin: facts and hypotheses. J Bioenerg Biomembr 32:79–89

    Article  PubMed  CAS  Google Scholar 

  49. Romanello M, Pani B, Bicego M, D’Andrea P (2001) Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 289:1275–1281

    Article  PubMed  CAS  Google Scholar 

  50. D’hondt C, Ponsaerts R, De Smedt H, Vinken M, De Vuyst E, De Bock M, Wang N, Rogiers V, Leybaert L, Himpens B, Bultynck G (2010) Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 23:305–316

    Article  PubMed  Google Scholar 

  51. Dando R, Roper SD (2009) Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. J Physiol 587:5899–5906

    Article  PubMed  CAS  Google Scholar 

  52. Ma W, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328:409–418

    Article  PubMed  CAS  Google Scholar 

  53. Pryazhnikov E, Khiroug L (2008) Sub-micromolar increase in [Ca(2+)](i) triggers delayed exocytosis of ATP in cultured astrocytes. Glia 56:38–49

    Article  PubMed  Google Scholar 

  54. Feranchak AP, Lewis MA, Kresge C, Sathe M, Bugde A, Luby-Phelps K, Antich PP, Fitz JG (2010) Initiation of purinergic signaling by exocytosis of ATP-containing vesicles in liver epithelium. J Biol Chem 285:8138–8147

    Article  PubMed  CAS  Google Scholar 

  55. Novak I, Jans IM, Wohlfahrt L (2010) Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. J Physiol 588:3615–3627

    Article  PubMed  CAS  Google Scholar 

  56. Miller DS, Villalobos AR, Pritchard JB (1999) Organic cation transport in rat choroid plexus cells studied by fluorescence microscopy. Am J Physiol 276:C955–C968

    PubMed  CAS  Google Scholar 

  57. Blum AE, Walsh BC, Dubyak GR (2010) Extracellular osmolarity modulates G protein-coupled receptor-dependent ATP release from 1321 N1 astrocytoma cells. Am J Physiol Cell Physiol 298:C386–C396

    Article  PubMed  CAS  Google Scholar 

  58. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867

    Article  PubMed  CAS  Google Scholar 

  59. Tan W, Colombini M (2007) VDAC closure increases calcium ion flux. Biochim Biophys Acta 1768:2510–2515

    Article  PubMed  CAS  Google Scholar 

  60. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  PubMed  CAS  Google Scholar 

  61. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  62. Groulx N, Boudreault F, Orlov SN, Grygorczyk R (2006) Membrane reserves and hypotonic cell swelling. J Membr Biol 214:43–56

    Article  PubMed  CAS  Google Scholar 

  63. Ishikawa M, Iwamoto T, Nakamura T, Doyle A, Fukumoto S, Yamada Y (2011) Pannexin 3 functions as an ER Ca2+ channel, hemichannel, and gap junction to promote osteoblast differentiation. J Cell Biol 193:1257–1274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Canadian Institutes of Health Research, the Canadian Cystic Fibrosis Foundation (RG) and the National Institutes of Health (USA): NIH-5R21CA149897-02 (ZG) and NIH-HL090786 (JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Grygorczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akopova, I., Tatur, S., Grygorczyk, M. et al. Imaging exocytosis of ATP-containing vesicles with TIRF microscopy in lung epithelial A549 cells. Purinergic Signalling 8, 59–70 (2012). https://doi.org/10.1007/s11302-011-9259-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9259-2

Keywords

Navigation