Skip to main content

Fundamentals of Epithelial Cl Transport

  • Chapter
  • First Online:
Ion Channels and Transporters of Epithelia in Health and Disease

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

While epithelial solute transport predates recorded history, our understanding of epithelial function has risen from the most basic level only recently. This chapter provides a historical perspective of epithelial electrophysiology and an initial foundation for much of the information contained in this volume. Epithelial cell models are presented in their contemporary contexts to demonstrate the philosophical breakthroughs that they heralded along with the novel techniques that made them possible. The text touches on the roles that unique physiological systems such as eel gill, frog skin, rabbit intestine, and cultured cell lines have contributed to our understanding. Two examples of diseases associated with abnormal Cl transport, cholera diarrhea and cystic fibrosis, are discussed, and underlying mechanisms that contribute to the pathology are identified. A hypothetical cell model with the minimal complement of transport proteins that are required for Cl secretion (Na+/K+-ATPase, Na+/K+/2Cl cotransporter, K+ channel, Cl channel) along with their required localization to the mucosal (apical) or serosal (basolateral) membrane is presented. Selected examples of these transport mechanisms are presented and discussed in the light of their discoveries, biophysical characteristics, pharmacology, genetic identities, and their molecular partners. A recently published comprehensive cell model is presented as the climax of the chapter that sets the stage for distinct components that are presented in greater detail throughout this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 74:245–269. doi:10.1146/annurev-physiol-020911-153336

    Article  CAS  PubMed  Google Scholar 

  • Al-Bazzaz FJ, Al-Awqati Q (1979) Interaction between sodium and chloride transport in canine tracheal mucosa. J Appl Physiol Respir Environ Exerc Physiol 46:111–119

    CAS  PubMed  Google Scholar 

  • Alper SL (2006) Molecular physiology of SLC4 anion exchangers. Exp Physiol 91:153–161. doi:10.1113/expphysiol.2005.031765

    Article  CAS  PubMed  Google Scholar 

  • Andersen DH (1938) Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathological study. Am J Dis Child 56:344–399

    Article  Google Scholar 

  • Andersen MN, Krzystanek K, Jespersen T, Olesen SP, Rasmussen HB (2012) AMP-activated protein kinase downregulates Kv7.1 cell surface expression. Traffic 13:143–156. doi:10.1111/j.1600-0854.2011.01295.x

    Article  CAS  PubMed  Google Scholar 

  • Andersen MN, Krzystanek K, Petersen F, Bomholtz SH, Olesen SP, Abriel H, Jespersen T, Rasmussen HB (2013) A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein. J Biol Chem 288:36841–36854. doi:10.1074/jbc.M113.525931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson MP, Welsh MJ (1992) Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Science 257:1701–1704

    Article  CAS  PubMed  Google Scholar 

  • Anderson MP, Berger HA, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991a) Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67:775–784

    Article  CAS  PubMed  Google Scholar 

  • Anderson MP, Gregory RJ, Thompson S, Souza DW, Paul S, Mulligan RC, Smith AE, Welsh MJ (1991b) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253:202–205

    Article  CAS  PubMed  Google Scholar 

  • Anderson MP, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991c) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251:679–682

    Article  CAS  PubMed  Google Scholar 

  • Angelo K, Jespersen T, Grunnet M, Nielsen MS, Klaerke DA, Olesen SP (2002) KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys J 83:1997–2006. doi:10.1016/S0006-3495(02)73961-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bank N (1968) Physiological basis of diuretic action. Annu Rev Med 19:103–118. doi:10.1146/annurev.me.19.020168.000535

    Article  CAS  PubMed  Google Scholar 

  • Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80. doi:10.1038/384078a0

    Article  CAS  PubMed  Google Scholar 

  • Bear CE, Duguay F, Naismith AL, Kartner N, Hanrahan JW, Riordan JR (1991) Cl channel activity in Xenopus oocytes expressing the cystic fibrosis gene. J Biol Chem 266:19142–19145

    CAS  PubMed  Google Scholar 

  • Bijman J, Quinton PM (1984) Influence of abnormal Cl impermeability on sweating in cystic fibrosis. Am J Physiol Cell Physiol 247:C3–C9

    CAS  Google Scholar 

  • Bissig M, Hagenbuch B, Stieger B, Koller T, Meier PJ (1994) Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 269:3017–3021

    CAS  PubMed  Google Scholar 

  • Bleich M, Briel M, Busch AE, Lang HJ, Gerlach U, Gogelein H, Greger R, Kunzelmann K (1997) KVLQT channels are inhibited by the K+ channel blocker 293B. Pflugers Arch 434:499–501

    Article  CAS  PubMed  Google Scholar 

  • Bolton JE, Field M (1977) Ca ionophore-stimulated ion secretion in rabbit ileal mucosa: relation to actions of cyclic 3′,5′-AMP and carbamylcholine. J Membr Biol 35:159–173

    Article  CAS  PubMed  Google Scholar 

  • Bonting SL (1966) Studies on sodium-potassium-activated adenosinetriphosphatase. XV. The rectal gland of the elasmobranchs. Comp Biochem Physiol 17:953–966

    Article  CAS  PubMed  Google Scholar 

  • Bourgoignie J, Klahr S, Yates J, Guerra L, Bricker NS (1969) Characteristics of ATPase system of turtle bladder epithelium. Am J Physiol 217:1496–1503

    CAS  PubMed  Google Scholar 

  • Bridges RJ, Worrell RT, Frizzell RA, Benos DJ (1989) Stilbene disulfonate blockade of colonic secretory Cl channels in planar lipid bilayers. Am J Physiol Cell Physiol 256:C902–C912

    CAS  Google Scholar 

  • Browning JG, Hardcastle J, Hardcastle PT, Redfern JS (1978) Localization of the effect of acetylcholine in regulating intestinal ion transport. J Physiol 281:15–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burg M, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210:1293–1298

    CAS  PubMed  Google Scholar 

  • Burg MB, Issaacson L, Grantham J, Orloff J (1968) Electrical properties of isolated perfused rabbit renal tubules. Am J Physiol 215:788–794

    CAS  PubMed  Google Scholar 

  • Burg M, Stoner L, Cardinal J, Green N (1973) Furosemide effect on isolated perfused tubules. Am J Physiol 225:119–124

    CAS  PubMed  Google Scholar 

  • Burger JW, Hess WN (1960) Function of the rectal gland in the spiny dogfish. Science 131:670–671

    Article  CAS  PubMed  Google Scholar 

  • Burrows W, Musteikis GM (1966) Cholera infection and toxin in the rabbit ileal loop. J Infect Dis 116:183–190

    Article  CAS  PubMed  Google Scholar 

  • Carpenter CC, Sack RB, Feeley JC, Steenberg RW (1968) Site and characteristics of electrolyte loss and effect of intraluminal glucose in experimental canine cholera. J Clin Invest 47:1210–1220. doi:10.1172/JCI105810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen LC, Rohde JE, Sharp GW (1971) Intestinal adenyl-cyclase activity in human cholera. Lancet 1:939–941

    Article  CAS  PubMed  Google Scholar 

  • Choi BY, Kim HM, Ito T, Lee KY, Li X, Monahan K, Wen Y, Wilson E, Kurima K, Saunders TL, Petralia RS, Wangemann P, Friedman TB, Griffith AJ (2011) Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. J Clin Invest 121:4516–4525. doi:10.1172/JCI59353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung DY, Chan PJ, Bankston JR, Yang L, Liu G, Marx SO, Karlin A, Kass RS (2009) Location of KCNE1 relative to KCNQ1 in the I(KS) potassium channel by disulfide cross-linking of substituted cysteines. Proc Natl Acad Sci USA 106:743–748. doi:10.1073/pnas.0811897106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarkson TW, Toole SR (1964) Measurement of short-circuit current and ion transport across the ileum. Am J Physiol 206:658–668

    CAS  Google Scholar 

  • Cliff WH, Frizzell RA (1990) Separate Cl conductances activated by cAMP and Ca2+ in Cl secreting epithelial cells. Proc Natl Acad Sci USA 87:4956–4960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole KS, Curtis HJ (1941) Membrane potential of the squid giant axon during current flow. J Gen Physiol 24:551–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Condliffe SB, Doolan CM, Harvey BJ (2001) 17beta-oestradiol acutely regulates Cl secretion in rat distal colonic epithelium. J Physiol 530:47–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  • Crabbe J (1961) Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J Clin Invest 40:2103–2110. doi:10.1172/JCI104436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuppoletti J, Chakrabarti J, Tewari KP, Malinowska DH (2014) Differentiation between human ClC-2 and CFTR Cl channels with pharmacological agents. Am J Physiol Cell Physiol 307:C479–C492. doi:10.1152/ajpcell.00077.2014

    Article  CAS  PubMed  Google Scholar 

  • Curran PF, Solomon AK (1957) Ion and water fluxes in the ileum of rats. J Gen Physiol 41:143–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darrow CW (1945) Congenital alkalosis with diarrhea. J Pediatr 26:519–532. doi:10.1016/S0022-3476(45)80079-3

    Article  Google Scholar 

  • Darwin C (1839) Journal of researches into the geology and natural history of the various countries visited by H.M.S. Beagle [under the command of Captain Fitzroy, R.N. from 1832 to 1836]. Colburn, London

    Google Scholar 

  • David JP, Andersen MN, Olesen SP, Rasmussen HB, Schmitt N (2013) Trafficking of the IKs -complex in MDCK cells: site of subunit assembly and determinants of polarized localization. Traffic 14:399–411. doi:10.1111/tra.12042

    Article  CAS  PubMed  Google Scholar 

  • De SN, Chatterje DN (1953) An experimental study of the mechanism of action of Vibrio cholerae on the intestinal mucous membrane. J Pathol Bacteriol 66:559–562

    Article  CAS  PubMed  Google Scholar 

  • Denning CR, Sommers SC, Quigley HJ Jr (1968) Infertility in male patients with cystic fibrosis. Pediatrics 41:7–17

    CAS  PubMed  Google Scholar 

  • Derksen HE, Verveen AA (1966) Fluctuations of resting neural membrane potential. Science 151:1388–1389

    Article  CAS  PubMed  Google Scholar 

  • Devor DC, Frizzell RA (1993) Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells. Am J Physiol Cell Physiol 265:C1271–C1280

    CAS  Google Scholar 

  • Devor DC, Singh AK, Bridges RJ, Frizzell RA (1996a) Modulation of Cl secretion by benzimidazolones. II. Coordinate regulation of apical GCl and basolateral GK. Am J Physiol Lung Cell Mol Physiol 271:L785–L795

    CAS  Google Scholar 

  • Devor DC, Singh AK, Frizzell RA, Bridges RJ (1996b) Modulation of Cl secretion by benzimidazolones. I. Direct activation of a Ca2+-dependent K+ channel. Am J Physiol Lung Cell Mol Physiol 271:L775–L784

    CAS  Google Scholar 

  • Devor DC, Singh AK, Gerlach AC, Frizzell RA, Bridges RJ (1997) Inhibition of intestinal Cl secretion by clotrimazole: direct effect on basolateral membrane K+ channels. Am J Physiol Cell Physiol 273:C531–C540

    CAS  Google Scholar 

  • Devor DC, Bridges RJ, Pilewski JM (2000) Pharmacological modulation of ion transport across wild-type and ΔF508 CFTR-expressing human bronchial epithelia. Am J Physiol Cell Physiol 279:C461–C479

    CAS  PubMed  Google Scholar 

  • Dharmsathaphorn K, Pandol SJ (1986) Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest 77:348–354. doi:10.1172/JCI112311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dharmsathaphorn K, McRoberts JA, Mandel KG, Tisdale LD, Masui H (1984) A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol Gastrointest Liver Physiol 246:G204–G208

    CAS  Google Scholar 

  • Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui L-C, Collins FS, Frizzell RA, Wilson JM (1990) Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62:1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Dutta NK, Habbu MK (1955) Experimental cholera in infant rabbits: a method for chemotherapeutic investigation. Br J Pharmacol Chemother 10:153–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dvir M, Strulovich R, Sachyani D, Ben-Tal Cohen I, Haitin Y, Dessauer C, Pongs O, Kass R, Hirsch JA, Attali B (2014) Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP(2). J Cell Sci 127:3943–3955. doi:10.1242/jcs.147033

    Article  CAS  PubMed  Google Scholar 

  • Edmonds CJ, Nielsen OE (1968) Transmembrane electrical potential differences and ionic composition of mucosal cells of rat colon. Acta Physiol Scand 72:338–349. doi:10.1111/j.1748-1716.1968.tb03856.x

    Article  CAS  PubMed  Google Scholar 

  • Evans MH, Linzell JL, Peaker M (1971) Membrane potentials in the mammary gland of the lactating rat. J Physiol 213:49P–50P

    CAS  PubMed  Google Scholar 

  • Everett LA, Green ED (1999) A family of mammalian anion transporters and their involvement in human genetic diseases. Hum Mol Genet 8:1883–1891

    Article  CAS  PubMed  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422. doi:10.1038/ng1297-411

    Article  CAS  PubMed  Google Scholar 

  • Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617

    Article  CAS  PubMed  Google Scholar 

  • Field M, Plotkin GR, Silen W (1968) Effects of vasopressin, theophylline and cyclic adenosine monophosphate on short-circuit current across isolated rabbit ileal mucosa. Nature 217:469–471

    Article  CAS  PubMed  Google Scholar 

  • Field M, Fromm D, Wallace CK, Greenough WBI (1969) Stimulation of active chloride secretion in small intestine by cholera exotoxin. J Clin Invest 48:24a

    Google Scholar 

  • Finkelstein RA, Atthasampunna P, Chulasamaya M, Charunmethee P (1966) Pathogenesis of experimental cholera: biologic ativities of purified procholeragen A. J Immunol 96:440–449

    CAS  PubMed  Google Scholar 

  • Finn AL, Handler JS, Orloff J (1967) Active chloride transport in the isolated toad bladder. Am J Physiol 213:179–184

    CAS  PubMed  Google Scholar 

  • Flores CA, Melvin JE, Figueroa CD, Sepulveda FV (2007) Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnn4. J Physiol 583:705–717. doi:10.1113/jphysiol.2007.134387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Florey HW, Wright RD, Jennings MA (1941) The secretions of the intestine. Physiol Rev 21:36–69

    CAS  Google Scholar 

  • Francis WL (1933) Output of electrical energy by frog-skin. Nature 131:805

    Article  Google Scholar 

  • Frizzell RA (1977) Active chloride secretion by rabbit colon: calcium-dependent stimulation by ionophore A23187. J Membr Biol 35:175–187

    Article  CAS  PubMed  Google Scholar 

  • Frizzell RA, Duffey ME (1980) Chloride activities in epithelia. Fed Proc 39:2860–2864

    CAS  PubMed  Google Scholar 

  • Frizzell RA, Hanrahan JW (2012) Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2:a009563. doi:10.1101/cshperspect.a009563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frizzell RA, Koch MJ, Schultz SG (1976) Ion transport by rabbit colon. I. Active and passive components. J Membr Biol 27:297–316

    Article  CAS  PubMed  Google Scholar 

  • Frizzell RA, Welsh MJ, Smith PL (1981) Electrophysiology of chloride-secreting epithelia. Soc Gen Physiol Ser 36:137–145

    CAS  PubMed  Google Scholar 

  • Frizzell RA, Rechkemmer G, Shoemaker RL (1986) Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science 233:558–560

    Article  CAS  PubMed  Google Scholar 

  • Gamble JL, Fahey KR, Appleton J, MacLachlan E (1945) Congenital alkalosis with diarrhea. J Pediatr 26:509–518. doi:10.1016/S0022-3476(45)80078-1

    Article  Google Scholar 

  • Geck P, Pietrzyk C, Burckhardt BC, Pfeiffer B, Heinz E (1980) Electrically silent cotransport on Na+, K+ and Cl in Ehrlich cells. Biochim Biophys Acta 600:432–447

    Article  CAS  PubMed  Google Scholar 

  • Gerlach AC, Gangopadhyay NN, Devor DC (2000) Kinase-dependent regulation of the intermediate conductance, calcium-dependent potassium channel, hIK1. J Biol Chem 275:585–598

    Article  CAS  PubMed  Google Scholar 

  • Gervais R, Dumur V, Letombe B, Larde A, Rigot JM, Roussel P, Lafitte JJ (1996) Hypofertility with thick cervical mucus: another mild form of cystic fibrosis? JAMA 276:1638

    Article  CAS  PubMed  Google Scholar 

  • Giebisch G (1958) Electrical potential measurements on single nephrons of Necturus. J Cell Physiol 51:221–239

    Article  CAS  Google Scholar 

  • Giebisch G, Klose RM, Malnic G, Sullivan WJ, Windhager EE (1964) Sodium movement across single perfused proximal tubules of rat kidneys. J Gen Physiol 47:1175–1194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grantham JJ, Burg MB (1966) Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol 211:255–259

    CAS  PubMed  Google Scholar 

  • Gray MA, Harris A, Coleman L, Greenwell JR, Argent BE (1989) Two types of chloride channel on duct cells cultured from human fetal pancreas. Am J Physiol Cell Physiol 257:C240–C251

    CAS  Google Scholar 

  • Greenough WBI, Pierce NF, Al Awqati Q, Carpenter CCJ (1969) Stimulation of gut electrolyte secretion by prostaglandins, theophylline, and cholera exotoxin. J Clin Invest 48:32a

    Article  Google Scholar 

  • Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev 65:760–797

    CAS  PubMed  Google Scholar 

  • Greger R, Schlatter E (1984a) Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). II. Effects of inhibitors. Pflugers Arch 402:364–375

    Article  CAS  PubMed  Google Scholar 

  • Greger R, Schlatter E (1984b) Mechanism of NaCl secretion in the rectal gland of spiny dogfish (Squalus acanthias). I. Experiments in isolated in vitro perfused rectal gland tubules. Pflugers Arch 402:63–75

    Article  CAS  PubMed  Google Scholar 

  • Greger R, Schlatter E, Wang F, Forrest JN Jr (1984) Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). III. Effects of stimulation of secretion by cyclic AMP. Pflugers Arch 402:376–384

    Article  CAS  PubMed  Google Scholar 

  • Guggino WB (1993) Outwardly rectifying chloride channels and CF: a divorce and remarriage. J Bioenerg Biomembr 25:27–35

    Article  CAS  PubMed  Google Scholar 

  • Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O'Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS (2003) International union of pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol Rev 55:583–586. doi:10.1124/pr.55.4.9

    Article  CAS  PubMed  Google Scholar 

  • Haas M, Schmidt WF 3rd, McManus TJ (1982) Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport. J Gen Physiol 80:125–147

    Article  CAS  PubMed  Google Scholar 

  • Hahn LA, Hevesy GC, Lundsgaard EC (1937) The circulation of phosphorus in the body revealed by application of radioactive phosphorus as indicator. Biochem J 31:1705–1709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn LA, Hevesy GC, Rebbe OH (1939) Do the potassium ions inside the muscle cells and blood corpuscles exchange with those present in the plasma? Biochem J 33:1549–1558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  • Hanrahan JW, Phillips JE (1984) KCl transport across an insect epithelium: II. Electrochemical potentials and electrophysiology. J Membr Biol 80:27–47

    Article  CAS  PubMed  Google Scholar 

  • Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I, Lander ES (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087

    Article  CAS  PubMed  Google Scholar 

  • Heintze K, Stewart CP, Frizzell RA (1983) Sodium-dependent chloride secretion across rabbit descending colon. Am J Physiol Gastrointest Liver Physiol 244:G357–G365

    CAS  Google Scholar 

  • Helman SI, Grantham JJ, Burg MB (1971) Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am J Physiol 220:1825–1832

    CAS  PubMed  Google Scholar 

  • Hevesy G, Hogfer E (1934) Elimination of water from the human body. Nature 134:879

    Article  Google Scholar 

  • Hevesy GV, Hofer E, Krogh A (1935) The permeability of the skin of frogs to water as determined by D2O and H2O. Skand Arch Physiol 72:199–214

    Article  Google Scholar 

  • Hihnala S, Kujala M, Toppari J, Kere J, Holmberg C, Hoglund P (2006) Expression of SLC26A3, CFTR and NHE3 in the human male reproductive tract: role in male subfertility caused by congenital chloride diarrhoea. Mol Hum Reprod 12:107–111. doi:10.1093/molehr/gal009

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin AL, Keynes RD (1955) Active transport of cations in giant axons from Sepia and Loligo. J Physiol 128:28–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current–voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hogben CA (1951) The chloride transport system of the gastric mucosa. Proc Natl Acad Sci USA 37:393–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hogben CA (1955) Active transport of chloride by isolated frog gastric epithelium: origin of the gastric mucosal potential. Am J Physiol 180:641–649

    CAS  PubMed  Google Scholar 

  • Hoglund P, Hihnala S, Kujala M, Tiitinen A, Dunkel L, Holmberg C (2006) Disruption of the SLC26A3-mediated anion transport is associated with male subfertility. Fertil Steril 85:232–235

    Article  CAS  PubMed  Google Scholar 

  • Hook JB, Williamson HE (1965) Lack of correlation between natriuretic activity and inhibition of renal NaK-activated ATPase. Proc Soc Exp Biol Med 120:358–360

    Article  CAS  PubMed  Google Scholar 

  • Hubel KA (1967) Bicarbonate secretion in rat ileum and its dependence on intraluminal chloride. Am J Physiol 213:1409–1413

    CAS  PubMed  Google Scholar 

  • Hubel KA (1969) Effect of luminal chloride concentration on bicarbonate secretion in rat ileum. Am J Physiol 217:40–45

    CAS  PubMed  Google Scholar 

  • Hwang TC, Lu L, Zeitlin PL, Gruenert DC, Huganir R, Guggino WB (1989) Cl channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase. Science 244:1351–1353

    Article  CAS  PubMed  Google Scholar 

  • Ingraham RC, Visscher MB (1935) Studies on the elimination of dyes in the gastric and pancreatic secretions, and inferences there from concerning the mechanisms of secretion of acid and base. J Gen Physiol 18:695–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isaacs PE, Corbett CL, Riley AK, Hawker PC, Turnberg LA (1976) In vitro behavior of human intestinal mucosa. The influence of acetyl choline on ion transport. J Clin Invest 58:535–542. doi:10.1172/JCI108498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen BS, Strobaek D, Olesen SP, Christophersen P (2001) The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2:401–422

    Article  CAS  PubMed  Google Scholar 

  • Jespersen T, Rasmussen HB, Grunnet M, Jensen HS, Angelo K, Dupuis DS, Vogel LK, Jorgensen NK, Klaerke DA, Olesen SP (2004) Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif. J Cell Sci 117:4517–4526. doi:10.1242/jcs.01318

    Article  CAS  PubMed  Google Scholar 

  • Jespersen T, Grunnet M, Olesen SP (2005) The KCNQ1 potassium channel: from gene to physiological function. Physiology (Bethesda) 20:408–416. doi:10.1152/physiol.00031.2005

    Article  CAS  Google Scholar 

  • Johannesson M, Landgren BM, Csemiczky G, Hjelte L, Gottlieb C (1998) Female patients with cystic fibrosis suffer from reproductive endocrinological disorders despite good clinical status. Hum Reprod 13:2092–2097

    Article  CAS  PubMed  Google Scholar 

  • Johnson G (1866) Rules for the treatment of epidemic diarrhoea and cholera. Br Med J 2:63–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joiner WJ, Wang LY, Tang MD, Kaczmarek LK (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 94:11013–11018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kartner N, Hanrahan JW, Jensen TJ, Naismith AL, Sun SZ, Ackerley CA, Reyes EF, Tsui LC, Rommens JM, Bear CE, Riordan R (1991) Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64:681–691

    Article  CAS  PubMed  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Keynes RD (1969) From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q Rev Biophys 2:177–281

    Article  CAS  PubMed  Google Scholar 

  • Keys AB (1931a) Chloride and water secretion and absorption by the gills of the eel. Z vergl Physiol 15:364–388. doi:10.1007/bf00339115

    Article  Google Scholar 

  • Keys AB (1931b) The heart-gill preparation of the eel and its perfusion for the study of a natural membrane in situ. Z vergl Physiol 15:352–363. doi:10.1007/bf00339114

    Article  Google Scholar 

  • Keys A, Willmer EN (1932) “Chloride secreting cells” in the gills of fishes, with special reference to the common eel. J Physiol 76(368–378):362

    Google Scholar 

  • Kimberg DV, Field M, Johnson J, Henderson A, Gershon E (1971) Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J Clin Invest 50:1218–1230. doi:10.1172/JCI106599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura T (1969) Electron microscopic study of the mechanism of secretion of milk. Nihon Sanka Fujinka Gakkai Zasshi 21:301–308

    CAS  PubMed  Google Scholar 

  • Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6:343–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308. doi:10.1111/j.1748-1716.1958.tb01563.x

    Article  CAS  PubMed  Google Scholar 

  • Koefoed-Johnsen V, Levi H, Ussing HH (1952a) The mode of passage of chloride ions through the isolated frog skin. Acta Physiol Scand 25:150–163. doi:10.1111/j.1748-1716.1952.tb00866.x

    Article  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH, Zerahn K (1952b) The origin of the short-circuit current in the adrenaline stimulated frog skin. Acta Physiol Scand 27:38–48. doi:10.1111/j.1748-1716.1953.tb00922.x

    Article  CAS  PubMed  Google Scholar 

  • Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316:234–238

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1937a) Osmotic regulation in the frog (R. esculenta) by active absorption of chloride ion. Skand Arch Physiol 76:60–74

    Article  CAS  Google Scholar 

  • Krogh A (1937b) The use of isotopes as indicators in biological research. Science 85:187–191. doi:10.1126/science.85.2199.187

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1939) The active uptake of ions into cells and organisms. Proc Natl Acad Sci USA 25:275–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kujala M, Hihnala S, Tienari J, Kaunisto K, Hastbacka J, Holmberg C, Kere J, Hoglund P (2007) Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction 133:775–784, doi:133/4/775 [pii]10.1530/rep.1.00964

    Article  CAS  PubMed  Google Scholar 

  • Kunzelmann K, Pavenstadt H, Greger R (1989) Properties and regulation of chloride channels in cystic fibrosis and normal airway cells. Pflugers Arch 415:172–182

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa J, Motoike HK, Rao J, Kass RS (2004) Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci USA 101:16374–16378. doi:10.1073/pnas.0405583101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurokawa J, Bankston JR, Kaihara A, Chen L, Furukawa T, Kass RS (2009) KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel. Channels (Austin) 3:16–24

    Article  CAS  Google Scholar 

  • Lee MG, Wigley WC, Zeng W, Noel LE, Marino CR, Thomas PJ, Muallem S (1999) Regulation of Cl/HCO3 exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J Biol Chem 274:3414–3421

    Article  CAS  PubMed  Google Scholar 

  • Leitch GJ, Burrows W (1968) Experimental cholera in the rabbit ligated intestine: ion and water accumulation in the duodenum, ileum and colon. J Infect Dis 118:349–359

    Article  CAS  PubMed  Google Scholar 

  • Li M, McCann JD, Anderson MP, Clancy JP, Liedtke CM, Nairn AC, Greengard P, Welsch MJ (1989) Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia. Science 244:1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen L, Kass RS, Dessauer CW (2012) The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J Biol Chem 287:29815–29824. doi:10.1074/jbc.M112.380568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Sanneman JD, Harbidge DG, Zhou F, Ito T, Nelson R, Picard N, Chambrey R, Eladari D, Miesner T, Griffith AJ, Marcus DC, Wangemann P (2013) SLC26A4 targeted to the endolymphatic sac rescues hearing and balance in Slc26a4 mutant mice. PLoS Genet 9(7), e1003641. doi:10.1371/journal.pgen.1003641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liin SI, Barro-Soria R, Larsson HP (2015) The KCNQ1 channel - remarkable flexibility in gating allows for functional versatility. J Physiol. doi:10.1113/jphysiol.2014.287607

    PubMed Central  PubMed  Google Scholar 

  • Lindemann B, Van Driessche W (1977) Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science 195:292–294

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B, Van Driessche W (1978) The mechanism of Na-uptake through Na-selective channels in the epithelium of frog skin. In: Hoffman JF (ed) Membrane transport processes, vol 1, Membrane transport processes. Raven, New York, pp 155–178

    Google Scholar 

  • Linzell JL, Peaker M (1971a) The effects of oxytocin and milk removal on milk secretion in the goat. J Physiol Lond 216:717–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linzell JL, Peaker M (1971b) Intracellular concentrations of sodium, potassium and chloride in the lactating mammary gland and their relation to the secretory mechanism. J Physiol Lond 216:683–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linzell JL, Peaker M (1971c) Mechanism of milk secretion. Physiol Rev 51:564–597

    CAS  PubMed  Google Scholar 

  • Linzell JL, Peaker M (1971d) The permeability of mammary ducts. J Physiol Lond 216:701–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohrmann E, Burhoff I, Nitschke RB, Lang HJ, Mania D, Englert HC, Hropot M, Warth R, Rohm W, Bleich M, Greger R (1995) A new class of inhibitors of cAMP-mediated Cl secretion in rabbit colon, acting by the reduction of cAMP-activated K+ conductance. Pflugers Arch 429:517–530

    Article  CAS  PubMed  Google Scholar 

  • Lutz MD, Cardinal J, Burg MB (1973) Electrical resistance of renal proximal tubule perfused in vitro. Am J Physiol 225:729–734

    CAS  PubMed  Google Scholar 

  • Mandel KG, Dharmsathaphorn K, McRoberts JA (1986) Characterization of a cyclic AMP-activated Cl-transport pathway in the apical membrane of a human colonic epithelial cell line. J Biol Chem 261:704–712

    CAS  PubMed  Google Scholar 

  • Maruyama Y, Peterson OH (1982) Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature 299:159–161

    Article  CAS  PubMed  Google Scholar 

  • Maruyama Y, Gallacher DV, Petersen OH (1983) Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature 302:827–829

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499. doi:10.1126/science.1066843

    Article  CAS  PubMed  Google Scholar 

  • Mazhari R, Nuss HB, Armoundas AA, Winslow RL, Marban E (2002) Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. J Clin Invest 109:1083–1090. doi:10.1172/JCI15062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCann JD, Matsuda J, Garcia M, Kaczorowski G, Welsh MJ (1990) Basolateral K+ channels in airway epithelia. I. Regulation by Ca2+ and block by charybdotoxin. Am J Physiol Lung Cell Mol Physiol 258:L334–L342

    CAS  Google Scholar 

  • McRoberts JA, Erlinger S, Rindler MJ, Saier MH Jr (1982) Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na+, K+, and Cl. J Biol Chem 257:2260–2266

    CAS  PubMed  Google Scholar 

  • McRoberts JA, Beuerlein G, Dharmsathaphorn K (1985) Cyclic AMP and Ca2+-activated K+ transport in a human colonic epithelial cell line. J Biol Chem 260:14163–14172

    CAS  PubMed  Google Scholar 

  • Melman YF, Um SY, Krumerman A, Kagan A, McDonald TV (2004) KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity. Neuron 42:927–937. doi:10.1016/j.neuron.2004.06.001

    Article  CAS  PubMed  Google Scholar 

  • Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721

    Article  CAS  PubMed  Google Scholar 

  • Nadel JA, Davis B (1978) Regulation of Na+ and Cl transport and mucous gland secretion in airway epithelium. Ciba Found Symp 54:133–147

    CAS  Google Scholar 

  • Nakajo K, Kubo Y (2007) KCNE1 and KCNE3 stabilize and/or slow voltage sensing S4 segment of KCNQ1 channel. J Gen Physiol 130:269–281. doi:10.1085/jgp.200709805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajo K, Kubo Y (2015) KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain. J Physiol. doi:10.1113/jphysiol.2014.287672

    PubMed Central  PubMed  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  • Nelson DJ, Tang JM, Palmer LG (1984) Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells. J Membr Biol 80:81–89

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell EK, Sedlacek RL, Singh AK, Schultz BD (2000) Inhibition of enterotoxin-induced porcine colonic secretion by diarylsulfonylureas in vitro. Am J Physiol Gastrointest Liver Physiol 279:G1104–G1112

    PubMed  Google Scholar 

  • O'Grady SM, Musch MW, Field M (1986) Stoichiometry and ion affinities of the Na-K-Cl cotransport system in the intestine of the winter flounder (Pseudopleuronectes americanus). J Membr Biol 91:33–41

    Article  PubMed  Google Scholar 

  • O'Mahony F, Alzamora R, Betts V, LaPaix F, Carter D, Irnaten M, Harvey BJ (2007) Female gender-specific inhibition of KCNQ1 channels and chloride secretion by 17beta-estradiol in rat distal colonic crypts. J Biol Chem 282:24563–24573. doi:10.1074/jbc.M611682200

    Article  CAS  PubMed  Google Scholar 

  • Panaghie G, Tai KK, Abbott GW (2006) Interaction of KCNE subunits with the KCNQ1 K+ channel pore. J Physiol 570:455–467. doi:10.1113/jphysiol.2005.100644

    Article  CAS  PubMed  Google Scholar 

  • Pedersen KA, Schroder RL, Skaaning-Jensen B, Strobaek D, Olesen SP, Christophersen P (1999) Activation of the human intermediate-conductance Ca2+-activated K+ channel by 1-ethyl-2-benzimidazolinone is strongly Ca2+-dependent. Biochim Biophys Acta 1420:231–240

    Article  CAS  PubMed  Google Scholar 

  • Pendred V (1896) Deaf-mutism and goitre. Lancet 2:532. doi:10.1016/S0140-6736(01)74403-0

    Article  Google Scholar 

  • Perkins FM, Handler JS (1981) Transport properties of toad kidney epithelia in culture. Am J Physiol Cell Physiol 241:C154–C159

    CAS  Google Scholar 

  • Pierce NF, Carpenter CC Jr, Elliott HL, Greenough WB 3rd (1971a) Effects of prostaglandins, theophylline, and cholera exotoxin upon transmucosal water and electrolyte movement in the canine jejunum. Gastroenterology 60:22–32

    CAS  PubMed  Google Scholar 

  • Pierce NF, Greenough WB 3rd, Carpenter CC Jr (1971b) Vibrio cholerae enterotoxin and its mode of action. Bacteriol Rev 35:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierucci-Alves F, Akoyev V, Stewart JC 3rd, Wang LH, Janardhan KS, Schultz BD (2011) Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 85:442–451. doi:10.1095/biolreprod.111.090860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pierucci-Alves F, Akoyev V, Schultz BD (2015) Bicarbonate exchangers SLC26A3 and SLC26A6 are localized at the apical membrane of porcine vas deferens epithelium. Physiol Rep 3(4):e12380, doi:10.14814/phy2.12380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potet F, Scott JD, Mohammad-Panah R, Escande D, Baro I (2001) AKAP proteins anchor cAMP-dependent protein kinase to KvLQT1/IsK channel complex. Am J Physiol Heart Circ Physiol 280:H2038–H2045

    CAS  PubMed  Google Scholar 

  • Pusch M (1998) Increase of the single-channel conductance of KvLQT1 potassium channels induced by the association with minK. Pflugers Arch 437:172–174

    Article  CAS  PubMed  Google Scholar 

  • Quinton PM (1983) Chloride impermeability in cystic fibrosis. Nature 301:421–422

    Article  CAS  PubMed  Google Scholar 

  • Quinton PM (1986) Missing Cl conductance in cystic fibrosis. Am J Physiol Cell Physiol 251:C649–C652

    CAS  Google Scholar 

  • Quinton PM, Bijman J (1983) Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med 308:1185–1189. doi:10.1056/NEJM198305193082002

    Article  CAS  PubMed  Google Scholar 

  • Reenstra WW (1993) Inhibition of cAMP- and Ca-dependent Cl secretion by phorbol esters: inhibition of basolateral K+ channels. Am J Physiol Cell Physiol 264:C161–C168

    CAS  Google Scholar 

  • Reuss L, Reinach P, Weinman SA, Grady TP (1983) Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium. Am J Physiol Cell Physiol 244:C336–C347

    CAS  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui LC (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Roggin GM, Banwell JG, Yardley JH, Hendrix TR (1972) Unimpaired response of rabbit jejunum to cholera toxin after selective damage to villus epithelium. Gastroenterology 63:981–989

    CAS  PubMed  Google Scholar 

  • Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3 transporters. Pflugers Arch 447:495–509. doi:10.1007/s00424-003-1180-2

    Article  CAS  PubMed  Google Scholar 

  • Romey G, Attali B, Chouabe C, Abitbol I, Guillemare E, Barhanin J, Lazdunski M (1997) Molecular mechanism and functional significance of the MinK control of the KvLQT1 channel activity. J Biol Chem 272:16713–16716

    Article  CAS  PubMed  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui LC, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Rose RC, Schultz SG (1971) Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol 57:639–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rothstein A, Cabantchik ZI, Knauf P (1976) Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc 35:3–10

    CAS  PubMed  Google Scholar 

  • Rufo PA, Jiang L, Moe SJ, Brugnara C, Alper SL, Lencer WI (1996) The antifungal antibiotic, clotrimazole, inhibits Cl secretion by polarized monolayers of human colonic epithelial cells. J Clin Invest 98:2066–2075. doi:10.1172/JCI119012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83. doi:10.1038/384080a0

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K, Fange R (1958) Salt glands in marine reptiles. Nature 182:783–784

    Article  Google Scholar 

  • Schmidt-Nielsen K, Jorgensen CB, Osaki H (1958) Extrarenal salt excretion in birds. Am J Physiol 193:101–107

    CAS  PubMed  Google Scholar 

  • Schoumacher RA, Ram J, Iannuzzi MC, Bradbury NA, Wallace RW, Hon CT, Kelly DR, Schmid SM, Gelder FB, Rado TA, Frizzell RA (1990) A cystic fibrosis pancreatic adenocarcinoma cell line. Proc Natl Acad Sci USA 87:4012–4016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–199. doi:10.1038/35003200

    Article  CAS  PubMed  Google Scholar 

  • Schultz SG (1972) Electrical potential differences and electromotive forces in epithelial tissues. J Gen Physiol 59:794–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schultz SG, Frizzell RA (1972) An overview of intestinal absorptive and secretory processes. Gastroenterology 63:161–170

    CAS  PubMed  Google Scholar 

  • Schultz SG, Zalusky R, Gass AE Jr (1964) Ion transport in isolated rabbit ileum. 3. Chloride fluxes. J Gen Physiol 48:375–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schultz BD, Singh AK, Aguilar-Bryan L, Frizzell RA, Bridges RJ (1995a) LY295501; a sulfonylurea that blocks CFTR Cl channels, but does not alter pancreatic β-cell function. Ped Pulm Suppl 12:200

    Google Scholar 

  • Schultz BD, Venglarik CJ, Bridges RJ, Frizzell RA (1995b) Regulation of CFTR Cl channel gating by ADP and ATP analogues. J Gen Physiol 105:329–361

    Article  CAS  PubMed  Google Scholar 

  • Schultz BD, DeRoos AD, Venglarik CJ, Singh AK, Frizzell RA, Bridges RJ (1996) Glibenclamide blockade of CFTR chloride channels. Am J Physiol Lung Cell Mol Physiol 271:L192–L200

    CAS  Google Scholar 

  • Schweinfest CW, Henderson KW, Suster S, Kondoh N, Papas TS (1993) Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci USA 90:4166–4170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serebro HA, Iber FL, Yardley JH, Hendrix TR (1969) Inhibition of cholera toxin action in the rabbit by cycloheximide. Gastroenterology 56:506–511

    CAS  PubMed  Google Scholar 

  • Sesti F, Goldstein SA (1998) Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J Gen Physiol 112:651–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shamgar L, Haitin Y, Yisharel I, Malka E, Schottelndreier H, Peretz A, Paas Y, Attali B (2008) KCNE1 constrains the voltage sensor of Kv7.1 K+ channels. PLoS ONE 3(4), e1943. doi:10.1371/journal.pone.0001943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharp GW, Hynie S (1971) Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229:266–269

    Article  CAS  PubMed  Google Scholar 

  • Sharp GW, Hynie S, Lipson LC, Parkinson DK (1971) Action of cholera toxin to stimulate adenyl cyclase. Trans Assoc Am Physicians 84:200–211

    CAS  PubMed  Google Scholar 

  • Sheppard DN, Welsh MJ (1992) Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol 100:573–591

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker RL, Makhlouf GM, Sachs G (1970) Action of cholinergic drugs on Necturus gastric mucosa. Am J Physiol 219:1056–1060

    CAS  PubMed  Google Scholar 

  • Shorofsky SR, Field M, Fozzard HA (1983) Electrophysiology of Cl secretion in canine trachea. J Membr Biol 72:105–115

    Article  CAS  PubMed  Google Scholar 

  • Shorofsky SR, Field M, Fozzard HA (1984) Mechanism of Cl secretion in canine trachea: changes in intracellular chloride activity with secretion. J Membr Biol 81:1–8

    Article  CAS  PubMed  Google Scholar 

  • Shorofsky SR, Field M, Fozzard HA (1986) Changes in intracellular sodium with chloride secretion in dog tracheal epithelium. Am J Physiol Cell Physiol 250:C646–C650

    CAS  Google Scholar 

  • Singh AK, Venglarik CJ, Bridges RJ (1995) Development of chloride channel modulators. Kidney Int 48:985–993

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Schultz BD, van Driessche W, Bridges RJ (2004) Transepithelial fluctuation analysis of chloride secretion. J Cyst Fibros 3(Suppl 2):127–132, doi:S1569199304000815 [pii]10.1016/j.jcf.2004.05.027

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Riederer B, Chen M, Xiao F, Krabbenhoft A, Engelhardt R, Nylander O, Soleimani M, Seidler U (2010) The switch of intestinal Slc26 exchangers from anion absorptive to HCO3 secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 298:C1057–C1065, doi:ajpcell.00454.2009 [pii]10.1152/ajpcell.00454.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  • Smith PL, Frizzell RA (1984) Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate. J Membr Biol 77:187–199

    Article  CAS  PubMed  Google Scholar 

  • Snow J (1849) On the mode of the communication of cholera. John Churchill, London

    Google Scholar 

  • Snow J (1855) On the mode of the communication of cholera (second edition), 2nd edn. John Churchill, London

    Google Scholar 

  • Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT (1997) Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med 336:1562–1567. doi:10.1056/NEJM199705293362204

    Article  CAS  PubMed  Google Scholar 

  • Stutts MJ, Cotton CU, Yankaskas JR, Cheng E, Knowles MR, Gatzy JT, Boucher RC (1985) Chloride uptake into cultured airway epithelial cells from cystic fibrosis patients and normal individuals. Proc Natl Acad Sci USA 82:6677–6681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suessbrich H, Busch AE (1999) The IKs channel: coassembly of IsK (minK) and KvLQT1 proteins. Rev Physiol Biochem Pharmacol 137:191–226

    CAS  PubMed  Google Scholar 

  • Suessbrich H, Bleich M, Ecke D, Rizzo M, Waldegger S, Lang F, Szabo I, Lang HJ, Kunzelmann K, Greger R, Busch AE (1996) Specific blockade of slowly activating IsK channels by chromanols - impact on the role of IsK channels in epithelia. FEBS Lett 396:271–275

    Article  CAS  PubMed  Google Scholar 

  • Syme CA, Gerlach AC, Singh AK, Devor DC (2000) Pharmacological activation of cloned intermediate- and small-conductance Ca2+-activated K+ channels. Am J Physiol Cell Physiol 278:C570–C581

    CAS  PubMed  Google Scholar 

  • Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242(4881):1042–1045

    Article  CAS  PubMed  Google Scholar 

  • Teorell T (1939) On the permeability of the stomach mucosa for acids and sme other substances. J Gen Physiol 23:263–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thesleff S, Schmidt-Nielsen K (1962) An electrophysiological study of the salt gland of the herring gull. Am J Physiol 202:597–600

    CAS  PubMed  Google Scholar 

  • Tidball CS (1961) Active chloride transport during intestinal secretion. Am J Physiol 200:309–312

    CAS  PubMed  Google Scholar 

  • Trier JS (1964) Studies on small intestinal crypt epithelium. I. Evidence for the mechanisms of secretory activity by undifferentiated crypt cells of the human small intestine. Gastroenterology 47:480–495

    CAS  PubMed  Google Scholar 

  • Turnberg LA, Bieberdorf FA, Morawski SG, Fordtran JS (1970) Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J Clin Invest 49:557–567. doi:10.1172/JCI106266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda S, Loo DD, Sachs G (1987) Regulation of K+ channels in the basolateral membrane of Necturus oxyntic cells. J Membr Biol 97:31–41

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH (1949a) The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol Scand 17:1–37. doi:10.1111/j.1748-1716.1949.tb00550.x

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH (1949b) Transport of ions across cellular membranes. Physiol Rev 29:127–155

    CAS  PubMed  Google Scholar 

  • Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23:110–127. doi:10.1111/j.1748-1716.1951.tb00800.x

    Article  CAS  PubMed  Google Scholar 

  • Van Driessche W, Zeiske W (1980) Spontaneous fluctuations of potassium channels in the apical membrane of frog skin. J Physiol 299:101–116

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Driessche W, Zeiske W (1985) Ionic channels in epithelial cell membranes. Physiol Rev 65:833–903

    PubMed  Google Scholar 

  • Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:213–217

    Article  CAS  PubMed  Google Scholar 

  • Veilleux S, Holt N, Schultz BD, Dubreuil JD (2008) Escherichia coli EAST1 toxin toxicity of variants 17–2 and O 42. Comp Immunol Microbiol Infect Dis 31:567–578, doi:S0147-9571(07)00107-5 [pii]10.1016/j.cimid.2007.10.003

    Article  PubMed  Google Scholar 

  • Venglarik CJ, Schultz BD, Frizzell RA, Bridges RJ (1994) ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism. J Gen Physiol 104:123–146

    Article  CAS  PubMed  Google Scholar 

  • Venglarik CJ, Schultz BD, de Roos AD, Singh AK, Bridges RJ (1996) Tolbutamide causes open channel blockade of cystic fibrosis transmembrane conductance regulator Cl channels. Biophys J 70:2696–2703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verveen AA, Derksen HE, Schick KL (1967) Voltage fluctuations of neural membrane. Nature 216:588–589

    Article  CAS  PubMed  Google Scholar 

  • Walker WG, Cooke CR, Iber FL, Lesch M, Caranasos GJ (1967) Topics in clinical medicine. A symposium. Uses and complications of diuretic therapy. Johns Hopkins Med J 121:194–216

    CAS  PubMed  Google Scholar 

  • Wang KW, Tai KK, Goldstein SA (1996a) MinK residues line a potassium channel pore. Neuron 16:571–577

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996b) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23. doi:10.1038/ng0196-17

    Article  PubMed  Google Scholar 

  • Wang W, Xia J, Kass RS (1998) MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel. J Biol Chem 273:34069–34074

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M (2005) Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol Cell Physiol 288:C957–C965

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P (2002) Adrenergic and muscarinic control of cochlear endolymph production. Adv Otorhinolaryngol 59:42–50

    CAS  PubMed  Google Scholar 

  • Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576:11–21. doi:10.1113/jphysiol.2006.112888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wangemann P, Wittner M, Di Stefano A, Englert HC, Lang HJ, Schlatter E, Greger R (1986) Clchannel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflugers Arch 407(Suppl 2):S128–S141

    Article  CAS  PubMed  Google Scholar 

  • Warth R, Hamm K, Bleich M, Kunzelmann K, von Hahn T, Schreiber R, Ullrich E, Mengel M, Trautmann N, Kindle P, Schwab A, Greger R (1999) Molecular and functional characterization of the small Ca2+-regulated K+ channel (rSK4) of colonic crypts. Pflugers Arch 438(4):437–444

    CAS  PubMed  Google Scholar 

  • Watten RH, Morgan FM, Yachai Na S, Vanikiati B, Phillips RA (1959) Water and electrolyte studies in cholera. J Clin Invest 38:1879–1889. doi:10.1172/JCI103965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welsh MJ (1983a) Inhibition of chloride secretion by furosemide in canine tracheal epithelium. J Membr Biol 71:219–226

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ (1983b) Intracellular chloride activities in canine tracheal epithelium. Direct evidence for sodium-coupled intracellular chloride accumulation in a chloride-secreting epithelium. J Clin Invest 71:1392–1401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welsh MJ (1986) An apical-membrane chloride channel in human tracheal epithelium. Science 232:1648–1650

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Smith PL, Frizzell RA (1982a) Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile. J Membr Biol 70:227–238

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Smith PL, Fromm M, Frizzell RA (1982b) Crypts are the site of intestinal fluid and electrolyte secretion. Science 218:1219–1221

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Smith PL, Frizzell RA (1983) Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces. J Membr Biol 71:209–218

    Article  CAS  PubMed  Google Scholar 

  • Weymer A, Huott P, Liu W, McRoberts JA, Dharmsathaphorn K (1985) Chloride secretory mechanism induced by prostaglandin E1 in a colonic epithelial cell line. J Clin Invest 7:1828–1836. doi:10.1172/JCI112175

    Article  Google Scholar 

  • Widdicombe JH, Nathanson IT, Highland E (1983) Effects of “loop” diuretics on ion transport by dog tracheal epithelium. Am J Physiol Cell Physiol 245:C388–C396

    CAS  Google Scholar 

  • Widdicombe JH, Welsh MJ, Finkbeiner WE (1985) Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc Natl Acad Sci USA 82:6167–6171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Worrell RT, Butt AG, Cliff WH, Frizzell RA (1989) A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol Cell Physiol 256:C1111–C1119

    CAS  Google Scholar 

  • Wright EM (1972) Mechanisms of ion transport across the choroid plexus. J Physiol 226:545–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright RD, Jennings MA, Florey HW, Lium R (1940) The influence of nerves and drugs on secretion by the small intestine and an investigation of the enzymes in intestinal juice. Exp Physiol 30:73–120

    Article  CAS  Google Scholar 

  • Yang Y, Sigworth FJ (1998) Single-channel properties of IKs potassium channels. J Gen Physiol 112:665–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yankaskas JR, Cotton CU, Knowles MR, Gatzy JT, Boucher RC (1985) Culture of human nasal epithelial cells on collagen matrix supports. A comparison of bioelectric properties of normal and cystic fibrosis epithelia. Am Rev Respir Dis 132:1281–1287

    CAS  PubMed  Google Scholar 

  • Zadunaisky JA (1966) Active transport of chloride in frog cornea. Am J Physiol 211:506–512

    CAS  PubMed  Google Scholar 

  • Zadunaisky JA, Lande MA (1971) Active chloride transport and control of corneal transparency. Am J Physiol 221:1837–1844

    CAS  PubMed  Google Scholar 

  • Zadunaisky JA, Candia OA, Chiarandini DJ (1963) The origin of the short-circuit current in the isolated skin of the South American frog Leptodactylus Ocellatus. J Gen Physiol 47:393–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaki L, Fasold H, Schuhmann B, Passow H (1975) Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells. J Cell Physiol 86:471–494. doi:10.1002/jcp.1040860305

    Article  CAS  PubMed  Google Scholar 

  • Zaydman MA, Cui J (2014) PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol 5:195. doi:10.3389/fphys.2014.00195

    Article  PubMed Central  PubMed  Google Scholar 

  • Zimmerman TW, Dobbins JW, Binder HJ (1982) Mechanism of cholinergic regulation of electrolyte transport in rat colon in vitro. Am J Physiol Gastrointest Liver Physiol 242:G116–G123

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruce D. Schultz or Daniel C. Devor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Schultz, B.D., Devor, D.C. (2016). Fundamentals of Epithelial Cl Transport. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_1

Download citation

Publish with us

Policies and ethics