Skip to main content
Log in

Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The apical membrane of epithelial cells from the A6 cell line grown on impermeable substrata was studied using the patch-clamp technique. We defined the apical membrane as that membrane in contact with the growth medium. In about 50% of the patches, channels with single-unit conductances of 360±45 pS in symmetrical 105mm NaCl solutions, and characteristic voltage-dependent inactivation were observed. Using excised membrane patches and varying the ionic composition of the bathing medium, we determined that the channels were anion selective, with a permeability ratio for Cl over Na+ of about 9∶1, calculated from the reversal potential using the constantfield equation. The channel was most active at membrane potentials between ±20 mV and inactivated, usually within a few seconds, at higher potentials of either polarity. Reactivation from this inactivation was slow, sometimes requiring minutes. In addition to its fully open state, the channel could also enter a flickering state, which appeared to involve rapid transitions to one or more submaximal conductance levels. The channel was inhibited by the disulfonic stilbene SITS in a manner characteristic of reversible open-channel blockers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blatz, A.L., Magleby, K.L. 1983. Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle.Biophys. J. 43:237–241

    PubMed  Google Scholar 

  • Cabantchik, Z.I., Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol. 10:311–330

    Google Scholar 

  • Colombini, M. 1979. A candidate for the permeability pathway of the outer mitochondrial membrane.Nature (London) 279:643–645

    Google Scholar 

  • Erlij, D. 1976. Solute transport across isolated epithelia.Kidney Int. 9:76–87

    PubMed  Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    Google Scholar 

  • Grantham, J. 1970. Vasopressin: Effect on deformability of urinary surface of collecting duct cells.Science 168:1093–1095

    PubMed  Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Article  Google Scholar 

  • Handler, J.S., Perkins, F.M., Johnson, J.P. 1980. Studies of renal cell function using cell culture techniques.Am. J. Physiol. 238:F1-F9

    Google Scholar 

  • Handler, J.S., Preston, A.S., Perkins, F.M., Matsumura, M., Johnson, J.P., Watlington, C.O. 1981. The effect of adrenal steroid hormones on epithelia formed in culture by A6 cells.Ann. N. Y. Acad. Sci. 372:442–454

    PubMed  Google Scholar 

  • Higgins, J.T., Jr., Gebler, B., Frömter, E. 1977. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile inNecturus maculosus.Pfluegers Arch. 371:87–97

    Article  Google Scholar 

  • Klyce, S.D., Wong, R.K.S. 1977. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium.J. Physiol. (London) 266:777–799

    Google Scholar 

  • Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagnets on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210

    PubMed  Google Scholar 

  • Kristensen, P. 1981. Is chloride transfer in frog skin localized to a special cell type?Acta Physiol. Scand. 113:123–124

    PubMed  Google Scholar 

  • Kristensen, P. 1983. Exchange diffusion, electrodiffusion and rectification in the chloride transport pathway of frog skin.J. Membrane Biol. 72:141–151

    Google Scholar 

  • Larsen, E.H., Kristensen, P. 1978. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo bufo).Acta Physiol. Scand. 102:1–21

    PubMed  Google Scholar 

  • Larsen, E.H., Rasmussen, B.E. 1982. Chloride channels in toad skin.Philos. Trans. R. Soc. London B299:413–434

    Google Scholar 

  • Macknight, A.D.C. 1977. Contribution of mucosal chloride to chloride in toad bladder epithelial cells.J. Membrane Biol. 36:55–63

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder: A “model” tight epithelium.Physiol. Rev. 60:615–715

    PubMed  Google Scholar 

  • Miller, C., White, M.M. 1980. A voltage-gated conductance fromTorpedo electroplax membrane.Ann. N.Y. Acad. Sci. 341:534–551

    PubMed  Google Scholar 

  • Nagel, W., Garcia-Diaz, J.F., Armstrong, W. McD. 1981. Intracellular ionic activities in frog skin.J. Membrane Biol. 61:127–134

    Google Scholar 

  • Narvarte, J., Finn, A.L. 1980. Anion-sensitive sodium conductance in the apical membrane of toad urinary bladder.J. Gen. Physiol. 76:69–81

    PubMed  Google Scholar 

  • Neher, E. 1983. The charge carried by single-channel currents of rat cultured muscle cells in the presence of local anaesthetics.J. Physiol. (London) 339:663–678

    Google Scholar 

  • Neher, E., Steinbach, J.H. 1978. Local anaesthetics transiently block currents through single acetylcholine-receptor channels.J. Physiol. (London) 277:153–176

    Google Scholar 

  • Perkins, F.M., Handler, J.S. 1981. Transport properties of toad kidney epithelia in culture.Am. J. Physiol. 241:C154-C159

    Google Scholar 

  • Petersen, K.U., Reuss, L. 1983. Cyclic AMP-induced chloride permeability in the apical membrane ofNecturus gallbladder epithelium.J. Gen. Physiol. 81:705–729

    PubMed  Google Scholar 

  • Rafferty, K.A. 1969. Mass culture of amphibia cells: Methods and observations concerning stability of cell type.In: Biology of Amphibian Tumors. M. Mizell, editor. pp. 52–81. Springer-Verlag, New York

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978a. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. Membrane Biol. 39:313–331

    Google Scholar 

  • Rick, R., Dörge, A., Macknight, A.D.C., Leaf, A., Thurau, K. 1978b. Electron microprobe analysis of the different epithelial cells of toad urinary bladder: Electrolyte concentrations at different functional states of transepithelial sodium transport.J. Membrane Biol. 39:257–271

    Google Scholar 

  • Rothstein, A., Cabantchik, Z.I., Knauf, P. 1976. Mechanism of anion transport in red blood cells: Role of membrane proteins.Fed. Proc. 35:3–10

    PubMed  Google Scholar 

  • Russell, J.M., Boron, W.F. 1976. Role of chloride transport in regulation of intracellular pH.Nature (London) 264:73–74

    Google Scholar 

  • Sachs, F., Neil, J., Barkakati, N. 1982. The automated analysis of data from single ionic channels.Pfluegers Arch. 395:331–340

    Google Scholar 

  • Sariban-Sohraby, S., Burg, M.B., Turner, R.J. 1983. Apical sodium uptake in the toad kidney epithelial cell line A6.Am. J. Physiol. 244:C167-C171

    Google Scholar 

  • Schein, S.J., Colombini, M., Finkelstein, A. 1976. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained fromParamecium mitochondria.J. Membrane Biol. 30:99–120

    Google Scholar 

  • Ussing, H.H. 1960. The alkali metal ions in biology. I. The alkali metals in isolated systems and tissues.In: Handbuch der Experimentellen Pharmakologie. Erganzungswerk. 11–13. O. Eichler and A. Farah, editors. pp. 1–195. Springer-Verlag, Berlin

    Google Scholar 

  • Voûte, C.L., Meier, W. 1978. The mitochondria-rich cell of frog skin as hormone-sensitive “shunt-path”.J. Membrane Biol. Special Issue:151–165

    Google Scholar 

  • White, M.M., Miller, C. 1979. A voltage-gated anion channel from the electric organ ofTorpedo californica.J. Biol. Chem. 254:10161–10166

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, D.J., Tang, J.M. & Palmer, L.G. Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells. J. Membrain Biol. 80, 81–89 (1984). https://doi.org/10.1007/BF01868692

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868692

Key Words

Navigation