Skip to main content
Log in

KCl transport across an insect epithelium: II. Electrochemical potentials and electrophysiology

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The cellular mechanism of K-stimulated Cl transport in locust hindgut was studied using double-barrelled ionsensitive microelectrodes and electrophysiological techniques. Steady-state net electrochemical potentials for Cl and K and the conductances of apical and basal membranes and paracellular pathway were determined under control conditions, during exposure to 1mm cAMP, and following ion substitutions. Under control open-circuit conditions, intracellular Cl activity (a cCl ) was 3.5 times that predicted for passive equilibrium across the apical membrane. The net electrochemical potential opposing Cl entry from the mucosal side\((\Delta \bar \mu _{Cl}^a /F)\) increased by 50% during cAMP stimulation of transepithelial Cl absorption whereas the net electrochemical potential favoring Cl exit across the basal membrane\(( - \Delta \bar \mu _{Cl}^b /F)\) was unchanged. No correlation was observed between\(\Delta \bar \mu _{Cl}^a /F\) and the net electrochemical potential across the apical membrane for Na. The net electrochemical potential favoring K entry across the apical membrane\(( - \Delta \bar \mu _K^a /F)\) was negligible underI sc conditions when Cl transport rate was approximately 10 μeq cm−2 hr−1. Locust rectal cells showed electrical and dye coupling. The results also indicate that most transepithelial diffusion of ions is transcellular and that epithelial tightness effectively increases during exposure to cAMP becauseR a andR b both decrease, by ≈80% whileR j is unchanged. The cAMP-induced δR b was abolished in Cl-free saline whereas δR a was insensitive to Cl removal, but was blocked by removing K from the saline. Based on these findings, our model for Cl absorption in locust hindgut features i) an active entry step for Cl at the apical membrane which is stimulated by cAMP and by low levels of K on the mucosal side, but is not energized by\( - \Delta \bar \mu _{Na}^a /F\) or\( - \Delta \bar \mu _K^a /F\) a large cAMP-stimulated Cl conductance in the basal membrane and a similar cAMP-stimulated K conductance in the apical membrane. cAMP dose-response curves are similar for the stimulation of active Cl absorption and Cl-independent (i. e. K) conductance, indicating that cAMP exerts dual control over active Cl transport and counter-ion permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augustus, J., Bijman, J., Os, C.H. van 1978. Electrical resistance of rabbit submaxillary main duct: A tight epithelium with leaky cell membranes.J. Membrane Biol. 43:203–226

    Google Scholar 

  2. Baumgarten, C.M., Fozzard, H.A. 1981. Intracellular chloride activity in mammalian ventricular muscle.Am. J. Physiol. 241:C121-C129

    Google Scholar 

  3. Berridge, M.J. 1981. Hormone-induced changes in ion level during stimulation of fluid secretion by gland cells.In The Application of Ion-selective Microelectrodes. T. Zeuthen, editor. pp. 61–74. North-Holland Biomedical, New York

    Google Scholar 

  4. Berridge, M.J., Lindley, B.D., Prince, W.T. 1975. Membrane permeability changes during stimulation of isolated salivary glands ofCalliphora by 5-hydroxytryptamine.J. Physiol. (London) 244:549–567

    Google Scholar 

  5. Berridge, M.J., Schlue, W.R. 1978. Ion-selective electrode studies on the effects of 5-hydroxytryptamine on the intracellular level of potassium in an insect salivary gland.J. Exp. Biol. 72:203–216

    PubMed  Google Scholar 

  6. Blankemeyer, J.T., Duncan, R.L. 1980. The potassium activity in a polymorphic potassium active transporting epithelium, insect midgut.Fed. Proc. 39:1711

    Google Scholar 

  7. Boulpaep, E.L., Sackin, H. 1980. Electrical analysis of intraepithelial barriers.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors., Vol. 13, pp. 169–197. Academic, New York

    Google Scholar 

  8. Cereijido, M., Borboa, L., Gonzalez-Mariscal, L. 1983. Occluding junctions and paracellular pathway in monolayers of MDCK cells.J. Exp. Biol. 106:205–215

    PubMed  Google Scholar 

  9. Clausen, C., Machen, T.E., Diamond, J. 1983. Use of AC impedance analysis to study membrane changes related to acid secretion in amphibian gastric mucosa.Biophys. J. 41:167–178

    PubMed  Google Scholar 

  10. Delong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19–43

    Google Scholar 

  11. Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Imtracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport.J. Membrane Biol. 42:229–245

    Article  Google Scholar 

  12. Eisenberg, R.S., Johnson, E.A. 1970. Three-dimensional electrical field problems in physiology.In: Progress in biophysics and molecular biology J.A.V. Butler and D. Noble, editors. Vol. 20. pp. 1–65. Pergamon, Toronto

    Google Scholar 

  13. Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259–301

    Google Scholar 

  14. Fujimoto, M., Kotera, K., Matsumura, Y. 1980. The direct measurement of K, Cl, Na and H ions in bullfrog tubule cells.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 13, pp. 49–61. Academic, New York

    Google Scholar 

  15. Fujimoto, M., Kubota, T. 1976. Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluid.Jpn. J. Physiol. 26:631–650

    PubMed  Google Scholar 

  16. Greger, R. 1981. Chloride reabsorption in the rabbit cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 390:30–37

    Google Scholar 

  17. Guggino, W.B., Windhager, E.E., Boulpaep, E.L., Giebisch, G. 1982. Cellular and paracellular resistances of theNecturus proximal tubule.J. Membrane Biol. 67:143–154

    Google Scholar 

  18. Gupta, B.L., Wall, B.J., Oschman, J.L., Hall, T.A. 1980. Direct microprobe evidence of local concentration gradients and recycling of electrolytes during fluid absorption in the rectal papillae ofCalliphora.J. Exp. Biol. 88:21–47

    Google Scholar 

  19. Hanrahan, J.W. 1982. Cellular mechanism and regulation of KCl transport across an insect epithelium. Ph. D. Thesis. University of British Columbia, Vancouver

    Google Scholar 

  20. Hanraban, J.W., Meredith, J., Phillips, J.E., Brandys, D. 1983. Methods for the study of transport and control in insect hindgut.In: Measurement of Ion Transport and Metabolic Rate in Insects. T. Bradley and T. Miller, editors. pp. 19–67. Springer-Verlag, New York

    Google Scholar 

  21. Hanrahan, J.W., Phillips, J.E. 1982. Electrogenic, K+-dependent chloride transport in locust hindgut.Philos. Trans. R. Soc. London B 299:585–595

    Google Scholar 

  22. Hanrahan, J.W., Phillips, J.E. 1983. K and cAMP stimulate the Cl pump in locust rectum.Am. Zool. 22:914

    Google Scholar 

  23. Hanrahan, J.W., Phillips, J.E. 1983. Mechanism and control of salt absorption in locust rectum.Am J. Physiol. 224:R131-R142

    Google Scholar 

  24. Hanrahan, J.W., Wills, N.K., Lewis, S.A. 1983. Bariuminduced current fluctuations from the basal membrane of an insect epithelium.Proc. Int. Congr. Physiol. Sci. p. 457

  25. Herrera, L., Lopes-Moratalla, N., Santiago, E., Ponz, F., Jordana, R. 1978. Effect of bicarbonate on chloride-dependent transmural potential and ATPase activity in the rectal wall ofSchistocerca gregaria.Rev. Esp. Fisiol. 34:219–224

    Google Scholar 

  26. Komnick, H., Schmitz, M.H., Hinssen, H. 1980. Biochemischer Nachweis von HCO 3 - und Cl-abhängigen ATPase-activitäten im rectum von anisopteranen Libellenlarven und Hemmung der rectalen chiloridaufnahme durch thiocyanat.Eur. J. Cell. Biol.,20:217–227

    PubMed  Google Scholar 

  27. Kotera, K., Satake, N., Honda, M., Fujimoto, M. 1979. The measurement of intracellular sodium activities in the bullfrog by means of a double-barrelled sodium ion-exchange microelectrode.Membr. Biochem. 2:323–338

    PubMed  Google Scholar 

  28. Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  29. Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    PubMed  Google Scholar 

  30. Marshall, W.S., Klyce, S.D. 1983. Cellular and paracellular pathway resistances in the “tight” Cl-secreting epithelium of rabbit cornea.J. Membrane Biol. 73:275–282

    Google Scholar 

  31. Moffett, D.F., Hudson, R.L., Moffett, S.B., Ridgway, R.L. 1982. Intracellular K+ activities and cell membrane potentials in a K+-transporting epithelium, the midgut of tobacco hornworm(Manduca sexta).J. Membrane Biol. 70:59–68

    Google Scholar 

  32. Ogden, T.E., Citron, M.C., Pierantoni, R. 1978. The jet stream microbeveler: An inexpensive way to bevel ultrafine glass micropipettes.Science 201:469–470

    PubMed  Google Scholar 

  33. Olver, F.W.J. 1967. Bessel functions of integer order.In: Handbook of Mathematical Functions. M. Abramowitz and J.A. Stegun, editors. pp. 355–422. National Bureau of Standards, Washington, D.C

    Google Scholar 

  34. Phillips, J.E. 1964. Rectal absorption in the desert locustSchistocerca gregaria Forskål. II. Sodium, potassium and chloride.J. Exp. Biol. 41:39–67

    PubMed  Google Scholar 

  35. Phillips, J. 1970 Apparent transport of water by insect excretory systems.Am. Zool. 10:413–436

    PubMed  Google Scholar 

  36. Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances.J. Gen. Physiol. 64:1–25

    PubMed  Google Scholar 

  37. Reuss, L., Finn, A.L. 1977. Mechanisms of voltage transients during current clamp inNecturus gallbladder.J. Membrane Biol. 37:299–319

    Google Scholar 

  38. Reuss, L., Weinman, S.A. 1979. Intracellular ionic, activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345–362

    Article  Google Scholar 

  39. Robinson, R.A., Stokes, R.H. 1970. Electrolyte solutions (Wnd ed., revised). Butterworths, London

    Google Scholar 

  40. Shiba, H. 1971. Heaviside's “Bessel cable” as an electric model for flat simple epithelial cells with low resistive junctional membranes.J. Theor. Biol. 30:59–68

    PubMed  Google Scholar 

  41. Socolar, S.J., Politoff, A.L. 1971. Uncoupling cell junctions of a glandular epithelium by depolarizing current.Science 172:492–494

    PubMed  Google Scholar 

  42. Spenney, J.G., Shoemaker, R.L., Sachs, G. 1974. Microelectrode studies of fundic gastric mucosa: Cellular coupling and shunt conductance.J. Membrane Biol. 19:105–128

    Google Scholar 

  43. Spring, J.H., Phillips, J.E. 1980. Studies on locust rectum: II. Identification of specific ion transport processes regulated by corpora cardiacum and cyclic-AMP.J. Exp. Biol. 86:225–236

    Google Scholar 

  44. Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233–254

    Article  Google Scholar 

  45. Stewart, W.W. 1978. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer.Cell 14:741–759

    PubMed  Google Scholar 

  46. Vietinghoff, U.E., Olszewska, E., Janiszewski, L. 1969. Measurement of the biolectric potentials in the rectum ofLocusta migratoria andCarausius morosus inin vitro preparations.J. Insect Physiol. 15:1273–1277

    Google Scholar 

  47. Walker, J.L. 1971. Ion specific liquid ion exchanger microelectrodes.Anal. Chem. 43:89A-92A

    Google Scholar 

  48. Williams, D., Phillips, J., Prince, W., Meredith, J. 1978. The source of short-circuit current across locust rectum.J. Exp. Biol. 77:107–122

    Google Scholar 

  49. Williams, J.C., Jr. 1983. The Malpighian tubule of the yellow fever mosquito: Its functionin vitro andin vivo. Ph.D. Thesis. Cornell University, Ithaca

    Google Scholar 

  50. Wood, J.L., Moreton, R.B. 1978. Refinements in the shortcircuit technique, and its application to active potassium transport across theCecropia midgut.J. Exp. Biol. 77:123–140

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanrahan, J.W., Phillips, J.E. KCl transport across an insect epithelium: II. Electrochemical potentials and electrophysiology. J. Membrain Biol. 80, 27–47 (1984). https://doi.org/10.1007/BF01868688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868688

Key Words

Navigation