Skip to main content
Log in

Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We used intracellular microelectrode techniques to study the mechanisms responsible for Cl secretion by canine tracheal epithelium. Tissues were treated with indomethacin (10−6 m, added to the mucosal solution) to reduce the baseline rate of Cl secretion and then stimulated by addition of epinephrine (10−6 m) or prostaglandin E1 (10−6 m) to the submucosal solution.

Three conclusions emerged from our findings: First, secretagogues enhance the rate of transepithelial Cl transport primarily by increasing apical membrane Cl permeability, since: (i) stimulation of secretion produced parallel decreases in transepithelial resistance (R t) and the membrane resistance ratioR a/Rb, whereR a andR b refer to the resistances of the apical and basolateral membranes; (ii) there was an inverse relation between the short-circuit current andR a/Rb; (iii) secretagogues depolarized the electrical potential difference across the apical membrane (ψa) and produced an equivalent hyperpolarization of the transepithelial electrical potential difference (ψ1) so that, in the steady-state, the basolateral membrane potential (ψb) was unchanged; and (iv) substitution of sulfate or gluconate for Cl in the bathing solutions prevented secretagogue-induced changes inR t, Ra/Rb, (ψa) and (ψ1).

Second, Cl entry into the cell across the basolateral membrane appears to be electrically-neutral since omission of Cl from the submucosal solution had no effect on (ψb) and did not decreaseR a/Rb as would be expected if Cl entered the cell by a conductive process.

Third, secretagogues decreaseR b. Approximately 20 sec after the onset of the secretory responseR a/Rb underwent a secondary increase whileR t continued to fall. The decrease inR b may reflect an increase in basolateral membrane K permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bazzaz, F.J., Al-Awqati, Q. 1979. Interaction between sodium and chloride transport in canine tracheal mucosa.J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46:111–119

    Google Scholar 

  • Al-Bazzaz, F.J., Cheng, E. 1979. Effect of catecholamines on ion transport in dog tracheal epithelium.J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 47:397–403

    Google Scholar 

  • Al-Bazzaz, F., Yadava, V.P., Westenfelder, C. 1981. Modification of Na and Cl transport in canine tracheal mucosa by prostaglandins.Am. J. Physiol. Renal Fluid Electrolyte Physiol. 240:F101-F105

    Google Scholar 

  • Cabantchik, Z.I., Rothstein, A. 1975. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207–226

    Google Scholar 

  • Cohen, L.H., Mueller, A., Steinmetz, P.R. 1978. Inhibition of the bicarbonate exit step in urinary acidification by a disulfonic stilbene.J. Clin. Invest. 61:981–986

    Google Scholar 

  • Davis, B., Ueki, I., Bruderman, I., Marin, M., Nadel, J.A. 1977. Submucosal action of furosemide on chloride ion movement across canine tracheal epithelium.Am. Rev. Respir. Dis. 115:320

    Google Scholar 

  • Davis, C.W., Finn, A.L. 1980. Basolateral membrane resistance of toad urinary bladder is sensitive to sodium transport.J. Gen. Physiol. 76:20a

    Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979a. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. Renal Fluid Electrolyte Physiol. 5:F1-F8

    Google Scholar 

  • Frizzell, R.A., Smith, P.L., Vosburgh, E., Field, M. 1979b. Coupled sodium-chloride influx across brush border of flounder intestine.J. Membrane Biol. 46:27–39

    Google Scholar 

  • Fromm, M., Schultz, S.G. 1981. Some properties of KCL filled microelectrodes.J. Membrane Biol. 62:239–244

    Google Scholar 

  • Fromter, E., Gebler, B. 1977. Electrical properties of amphibian urinary bladder epithelia.Pfuegers Arch. 371:99–108

    Google Scholar 

  • Gatzy, J.T., Boucher, R.C. 1979. Amphotericin B and ion flow across canine trachea.Physiologist 22:43

    Google Scholar 

  • Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodium-coupled amino acid and sugar transport byNecturus small intestine.J. Membrane Biol. 66:25–39

    Google Scholar 

  • Klyce, S.D., Wong, R.K.S. 1977. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium.J. Physiol. (London) 266:777–799

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  • Nagel, W., Reinach, P. 1980. Mechanism of stimulation by epinephrine of active transepithelial Cl transport in isolated frog cornea.J. Membrane Biol. 56:73–79

    Google Scholar 

  • Olver, R.E., Davis, B., Marin, M.G., Nadel, J.A. 1975. Active transport of Na+ and Cl across the canine tracheal epitheliumin vitro.Am. Rev. Respir. Dis. 112:811–815

    Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1977. Active sodium transport and the electrophysiology of rabbit colon.J. Membrane Biol. 33:351–384

    Google Scholar 

  • Smith, P.L., Welsh, M.J., Frizzell, R.A. 1982. Chloride secretion by canine tracheal epithelium. I. Role of intracellular cAMP levels.J. Membrane Biol. 70:217–226

    Google Scholar 

  • Stutts, M.J., Boucher, R.C., Gatzy, J.T. 1980. Effects of KCl on excised canine tracheal epithelium.Physiologist 23:62

    Google Scholar 

  • Welsh, M.J., Smith, P.L., Frizzell, R.A. 1981. Intracellular chloride activities in the isolated perfused shark rectal gland.Clin. Res. 29:480A

    Google Scholar 

  • Welsh, M.J., Widdicombe, J.H. 1980. Pathways of ion movement in the canine tracheal epithelium.Am. J. Physiol. Renal Fluid Electrolyte Physiol. 239:F215-F221

    Google Scholar 

  • Welsh, M.J., Widdicombe, J.H., Nadel, J.A. 1980. Fluid transport across the canine tracheal epithelium.J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 49:905–909

    Google Scholar 

  • Westenfelder, C., Earnest, W.R., Al-Bazzaz, F.J. 1980. Characterization of Na−K-ATPase in dog tracheal epithelium: Enzymatic and ion transport measurements.J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 48:1008–1019

    Google Scholar 

  • Widdicombe, J.H., Basbaum, C.B., Highland, E., 1981. Ion contents and other properties of isolated cells from dog tracheal epithelium.Am. J. Physiol. 241:C184-C192

    Google Scholar 

  • Widdicombe, J.H., Basbaum, C.B., Yee, J.Y. 1979a. Localization of Na pumps in the tracheal epithelium of the dog.J. Cell Biol. 82:380–390

    Google Scholar 

  • Widdicombe, J.H., Ueki, I.F., Bruderman, I., Nadel, J.A. 1979. The effects of sodium substitution and ouabain on ion transport by dog tracheal epithelium.Am. Rev. Respir. Dis. 120:385–392

    Google Scholar 

  • Zadunaisky, J.A., Spring, K.R., Shindo, T. 1979. Intracellular chloride activity in the corneal epithelium.Fed. Proc. 38:1059

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welsh, M.J., Smith, P.L. & Frizzell, R.A. Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile. J. Membrain Biol. 70, 227–238 (1982). https://doi.org/10.1007/BF01870565

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870565

Key Words

Navigation