Skip to main content

Protein Production with Recombinant Baculoviruses in Lepidopteran Larvae

  • Protocol
Baculovirus and Insect Cell Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1350))

Abstract

With an increasing need for functional analysis of proteins, there is a growing demand for fast and cost-effective production of biologically active eukaryotic proteins. The baculovirus expression vector system (BEVS) is widely used, and in the vast majority of cases cultured insect cells have been the host of choice. A low cost alternative to bioreactor-based protein production exists in the use of live insect larvae as “mini bioreactors.” In this chapter we focus on Trichoplusia ni as the host insect for recombinant protein production, and explore three different methods of virus administration to the larvae. The first method is labor-intensive, as extracellular virus is injected into each larva, whereas the second lends itself to infection of large numbers of larvae via oral inoculation. While these first two methods require cultured insect cells for the generation of recombinant virus, the third relies on transfection of larvae with recombinant viral DNA and does not require cultured insect cells as an intermediate stage. We suggest that small- to mid-scale recombinant protein production (mg-g level) can be achieved in T. ni larvae with relative ease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maeda S, Kawai T, Obinata M et al (1985) Production of human α-interferon in silkworm using a baculovirus vector. Nature 315:592–594

    Article  PubMed  CAS  Google Scholar 

  2. Miyajima A, Schreurs J, Otsu K et al (1987) Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene 58:273–281

    Article  PubMed  CAS  Google Scholar 

  3. Zhu J, Ze Y, Zhang C et al (2006) High-level expression of recombinant human paraoxonase 1 Q in silkworm larvae (Bombyx mori). Appl Microbiol Biotechnol 72:103–108

    Article  PubMed  CAS  Google Scholar 

  4. Du D, Kato T, Suzuki F et al (2009) Expression of protein complex comprising the human prorenin and (pro)renin receptor in silkworm larvae using bombyx mori nucleopolyhedrovirus (BmNPV) bacmids for improving biological function. Mol Biotechnol 43:154–161

    Article  PubMed  CAS  Google Scholar 

  5. Usami A, Ishiyama S, Enomoto C et al (2011) Comparison of recombinant protein expression in a baculovirus system in insect cells (Sf-9) and silkworm. J Biochem 149:219–227

    Article  PubMed  CAS  Google Scholar 

  6. Gretch D, Sturley S, Friesen P et al (1991) Baculovirus-mediated expression of human apolipoprotein E in Manduca sexta larvae generates particles that bind to the low density lipoprotein receptor. Proc Natl Acad Sci U S A 88:8530–8533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Hellers M, Steiner H (1992) Diapausing pupae of Hyalophora cecropia: an alternative host for baculovirus mediated expression. Insect Biochem Mol Biol 22:35–39

    Article  CAS  Google Scholar 

  8. Ahmad S, Bassiri M, Banerjee A et al (1993) Immunological characterization of the VSV nucleocapsid (N) protein expressed by recombinant baculovirus in Spodoptera exigua larvae: use in differential diagnosis between vaccinated and infected animals. Virology 192:207–216

    Article  PubMed  CAS  Google Scholar 

  9. Kuroda K, Groener A, Frese K et al (1989) Synthesis of biologically active influenza virus hemagglutinin in insect larvae. J Virol 63:1677–1685

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Richardson C, Banville M, Lalumiere M et al (1992) Bacterial luciferase produced with rapid-screening baculovirus vectors is a sensitive reporter for infection of insect cells and larvae. Intervirology 34:213–227

    PubMed  CAS  Google Scholar 

  11. Argaud O, Croizier L, Lopez-Ferber M et al (1998) Two key mutations in the host-range specificity domain of the p143 gene of Autographa californica nucleopolyhedrovirus are required to kill Bombyx mori larvae. J Gen Virol 79:931–935

    Article  PubMed  CAS  Google Scholar 

  12. Groener A (1989) Host range of AcNPV. In: Granados R, Federici B (eds) The biology of baculoviruses, vol 1. CRC, Boca Raton, FL, pp 177–188

    Google Scholar 

  13. Kovaleva E, O’Connell K, Buckley P et al (2009) Recombinant protein production in insect larvae: host choice, tissue distribution and heterologous gene instability. Biotechnol Lett 31:381–386

    Article  PubMed  CAS  Google Scholar 

  14. Villalba M, Wente S, Russell D et al (1989) Another version of the human insulin receptor kinase domain: expression, purification, and characterization. Proc Natl Acad Sci U S A 86:7848–7852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Medin J, Hunt L, Gathy K et al (1990) Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae. Proc Natl Acad Sci U S A 87:2760–2764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Tremblay N, Kennedy B, Street I et al (1993) Human group II phospholipase A2 expressed in Trichoplusia ni larvae—isolation and kinetic properties of the enzyme. Protein Expr Purif 4:490–498

    Article  PubMed  CAS  Google Scholar 

  17. Pham M-Q, Naggie S, Wier M et al (1999) Human interleukin-2 production in insect (Trichoplusia ni) larvae: effects and partial control of proteolosis. Biotechnol Bioeng 62:175–182

    Article  PubMed  CAS  Google Scholar 

  18. Hale C, Zimmerschied J, Bliler S et al (1999) Large-scale expression of recombinant cardiac sodium-calcium exchange in insect larvae. Protein Expr Purif 15:121–126

    Article  PubMed  CAS  Google Scholar 

  19. O’Connell K, Kovaleva E, Campbell J et al (2007) Production of a recombinant antibody fragment in whole insect larvae. Mol Biotechnol 36:44–51

    Article  PubMed  Google Scholar 

  20. Rubiolo J, López-Alonso H, Alfonso A et al (2012) Characterization and activity determination of the human protein phosphatase 2A catalytic subunit α expressed in insect larvae. Appl Biochem Biotechnol 167:918–928

    Article  PubMed  CAS  Google Scholar 

  21. Gómez-Casado E, Gómez-Sebastian S, Núñez M et al (2011) Insect larvae biofactories as a platform for influenza vaccine production. Protein Expr Purif 79:35–43

    Article  PubMed  Google Scholar 

  22. Perez-Filgueira M, Resino-Talaván P, Cubillos C et al (2007) Development of a low-cost, insect larvae-derived recombinant subunit vaccine against RHDV. Virology 364:422–430

    Article  PubMed  CAS  Google Scholar 

  23. Millán A, Gómez-Sebastián S, Nuñez M et al (2010) Human papillomavirus-like particles vaccine efficiently produced in a non-fermentative system based on insect larva. Protein Expr Purif 74:1–8

    Article  PubMed  Google Scholar 

  24. Pérez-Marín E, Gómez-Sebastián S, Argilaguet J et al (2010) Immunity conferred by an experimental vaccine based on the recombinant PCV2 Cap protein expressed in Trichoplusia ni-larvae. Vaccine 28:2340–2349

    Article  Google Scholar 

  25. Greenblatt H, Otto T, Kirkpatrick M et al (2012) Structure of recombinant human carboxylesterase 1 isolated from whole cabbage looper larvae. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:269–272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Lihoradova O, Ogay I, Abdukarimov A et al (2007) The Homingbac baculovirus cloning system: an alternative way to introduce foreign DNA into baculovirus genomes. J Virol Methods 140:59–65

    Article  PubMed  CAS  Google Scholar 

  27. Wood H, Trotter K, Davis T et al (1993) Per os infectivity of preoccluded virions from polyhedrin-minus recombinant baculoviruses. J Invertebr Pathol 62:64–67

    Article  Google Scholar 

  28. Wood HA (1997) Stable pre-occluded virus particle. US Patent 5,593,669

    Google Scholar 

  29. Wood HA (2000) Stable pre-occluded virus particle for use in recombinant protein production and pesticides. US Patent 6,090,379

    Google Scholar 

  30. O’Reilly D, Brown M, Miller L (1992) Alteration of ecdysteroid metabolism due to baculovirus infection of the fall armyworm, Spodoptera frugiperda: host ecdysteroids are conjugated with galactose. Insect Biochem Mol Biol 22:313–320

    Article  Google Scholar 

  31. Baird G, Zacharias D, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11984–11989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Wu X, Cao C, Kumar V et al (2004) An innovative technique for inoculating recombinant baculovirus into the silkworm Bombyx mori using lipofectin. Res Microbiol 155:462–466

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Ian Smith (Nara Institute of Science and Technology, Japan) for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kovaleva, E., Davis, D.C. (2016). Protein Production with Recombinant Baculoviruses in Lepidopteran Larvae. In: Murhammer, D. (eds) Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, vol 1350. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3043-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3043-2_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3042-5

  • Online ISBN: 978-1-4939-3043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics