Skip to main content
Log in

Production of a recombinant antibody fragment in whole insect larvae

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Infection of insect cells with baculovirus expression constructs is commonly used to produce recombinant proteins that require post-translational modifications for their activity, such as mammalian proteins. However, technical restraints limit the capacity of insect cell-based culture systems to be scaled up to produce the large amounts of recombinant protein required for human pharmaceuticals. In this study, we designed an automated insect rearing system and whole insect baculovirus expression system (PERLXpress™) for the expression and purification of recombinant proteins on a large scale. As a test model, we produced a recombinant mouse anti-botulinum antibody fragment (Fab) in Trichoplusia ni larvae. A recombinant baculovirus co-expressing the Fab heavy and light chains together with N-terminal sequences from the silkworm hormone bombyxin, to direct proteins into the secretory pathway, was constructed. Fifth instar larvae were reared and infected orally with recombinant (pre- occluded) baculovirus using the automated system and harvested approximately after 4 days. The total yield of recombinant Fab was 1.1 g/kg of larvae, resulting in 127 mg of pure Fab in one production run. The Fab was purified to homogeneity using immobilized metal affinity chromatography, gel filtration, and anion exchange chromatography. The identity of the purified protein was verified by Western blots and size-exclusion chromatography. Purified recombinant Fab was used to detect botulinum toxin in ELISA experiments, demonstrating that the heavy and light chains were properly assembled and folded into functional heterodimers. We believe that this is the first demonstration of the expression of a recombinant antibody in whole insect larvae. Our results demonstrate that a baculovirus-whole larvae expression system can be used to express functionally active recombinant Fab fragments. As the PERLXpress™ system is an automated and linearly scalable technology, it represents an attractive alternative to insect cell culture for the production of large amounts of human pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ailor, E., & Betenbaugh, M. J. (1999). Modifying secretion and post-translational processing in insect cells. Current Opinion in Biotechnology, 10, 142–145.

    Article  PubMed  CAS  Google Scholar 

  2. Blanco, G. (2005). The NA/K-ATPase and its isozymes: What we have learned using the baculovirus expression system. Frontiers in Bioscience, 10, 2397–2411.

    Article  PubMed  CAS  Google Scholar 

  3. Bozon, V., Remy, J. J., Pajot-Augy, E., Couture, L., Biache, G., Severini, M., & Salesse, R. (1995). Influence of promoter and signal peptide on the expression and secretion of recombinant porcine LH extracellular domain in baculovirus/lepidopteran cells or the caterpillar system. Journal of Molecular Endocrinology, 14, 277–284.

    Article  PubMed  CAS  Google Scholar 

  4. Cha, H. J., Dalal, N. G., Pham, M. Q., & Bentley, W. E. (1999). Purification of human interleukin-2 fusion protein produced in insect larvae is facilitated by fusion with green fluorescent protein and metal affinity ligand. Biotechnology Progress, 15, 283–286.

    Article  PubMed  CAS  Google Scholar 

  5. Emanuel, P., O’Brien, T., Burans, J., DasGupta, B., Valdes, J. J., & Eldefrawi, M. (1996). Directing antibody specificity towards botulinum neurotoxin with combinatorial phage display libraries. Journal of Immunological Methods, 193, 189–197.

    Article  PubMed  CAS  Google Scholar 

  6. Goswami, M., Dobson, D. E., Beverley, S. M., & Turco, S. J. (2006). Demonstration by heterologous_expression that th6e Leishmania SCA1 gene encodes an arabinopyranosyltransferase. Glycobiology, 16, 230–236.

    Article  PubMed  CAS  Google Scholar 

  7. Hale, C. C., Zimmerschied, J. A., Bliler, S., & Price, E. M. (1999). Large-scale expression of recombinant cardiac sodium-calcium exchange in insect larvae. Protein Expression and Purification, 15, 121–126.

    Article  PubMed  CAS  Google Scholar 

  8. Hasemann, C. A., & Capra, J. D. (1991). High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system. Proceedings of the National Academy of Sciences of the United States of America, 87, 3942–3946.

    Article  Google Scholar 

  9. Ikonomou, L., Schneider, Y. J., & Agathos, S. N. (2003). Insect cell culture for industrial production of recombinant proteins. Review. Applied Microbiology and Biotechnology, 62, 1–20.

    Article  PubMed  CAS  Google Scholar 

  10. Iwami, M., Kawakami, A., Ishizaki, H., Takahashi, S. Y., Adachi, T., Suzuki, Y., Nagasawa, H., & Suzuki, A. (1989). Cloning of a gene encoding bombyxin, an insulin-like brain secretory peptide of the silkmoth Bombyx mori with prothoracicotropic activity. Development, Growth & Differentiation, 31, 31–37.

    Article  CAS  Google Scholar 

  11. Jarvis, D. L. (1997). Baculovirus expression vectors. In L. K. Miller (Ed.), The baculoviruses. New York and London: Plenum Press.

  12. Jayakumar, A., Cataltepe, S., Kang, Y., Frederick, M. J., Mitsudo, K., Henderson, Y., Crawford, S. E., Silverman, G. A., & Clayman, G. L. (2004). Production of serpins using baculovirus expression systems. Methods, 32, 177–184.

    Article  PubMed  CAS  Google Scholar 

  13. Kool, M., Voncken, J. W., van Lier, F. L. J., Tramper, J., & Vlak, J. M. (1991). Detection and analysis of the Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology, 183, 397–746.

    Article  Google Scholar 

  14. LaPointe, P., & Balch, W. E. (2005). Purification and properties of mammalian Sec23/24 from insect cells. Methods in Enzymology, 404, 66–74.

    PubMed  CAS  Google Scholar 

  15. Liang, M., Dubel, S., Li, D., Queitsch, I., Li, W., & Bautz, E. K. (2001). Baculovirus expression cassette vectors for rapid production of complete human IgG from phage display selected antibody fragments. Journal of Immunological Methods, 247, 119–130.

    Article  PubMed  CAS  Google Scholar 

  16. Liang, M., Mahler, M., Koch, J., Ji, Y., Li, D., Schmaljohn, C., & Bautz, E. K. (2003). Generation of an HFRS patient-derived neutralizing recombinant antibody to Hantaan virus G1 protein and definition of the neutralizing domain. Journal of Medical Virology, 69, 99–107.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, Y., DeCarolis, N., & van Beek, N. (in press). Protein production with recombinant baculoviruses in Lepidopteran larvae. In Murhammer (Ed.), Baculovirus protocols. Methods in molecular biology. Totowa, NJ: Humana Press.

  18. Maranga, L., Cunha, A., Clemente, J., Cruz, P., & Carrondo, M. J. T. (2004). Scale-up of virus-like particles production: Effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity. Journal of Biotechnology, 107, 55–64.

    Article  PubMed  CAS  Google Scholar 

  19. Massotte, D. (2003). G protein-coupled receptor overexpression with the baculovirus-insect cell system: A tool for structural and functional studies. Biochimica et Biophysica Acta, 1610, 77–89.

    Article  PubMed  CAS  Google Scholar 

  20. Nagaya, H., Kanaya, T., Kaki, H., Tobita, Y., Takahashi, M., Takahashi, H., Yokomizo, Y., & Inumaru, S. (2004). Establishment of a large-scale purification procedure for purified recombinant bovine interferon-tau produced by a silkworm- baculovirus gene expression system. The Journal of Veterinary Medical Science, 66, 1395–1401.

    Article  PubMed  CAS  Google Scholar 

  21. O’Reilly, D. R., Miller, L. K., & Luckow, V. A. (1994). Baculovirus expression vectors: A laboratory manual. New York, NY: Oxford University Press.

    Google Scholar 

  22. Pham, M. Q., Naggie, S., Wier, M., Cha, H. J., & Bentley, W. E. (1999). Human interleukin-2 production in insect (Trichoplusia ni) larvae: Effects and partial control of proteolysis. Biotechnology and Bioengineering, 62, 175–182.

    Article  PubMed  CAS  Google Scholar 

  23. Pijlman, G. P., van Schijndel, J. E., & Vlak, J. M. (2003). Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. The␣Journal of General Virology, 84, 2669–2678.

    Article  PubMed  CAS  Google Scholar 

  24. Platteborze, P. L., & Broomfield, C. A. (2000). Expression of biologically active human butyrylcholinesterase in the cabbage looper (Trichoplusia ni). Biotechnology and Applied Biochemistry, 31, 225–229.

    Article  PubMed  CAS  Google Scholar 

  25. Plikaytis, B. D., Turner, S. H., Gheesling, L. L., & Carlone, G. M. (1991). Comparisons of standard curve-fitting methods to quantitate Neisseria meningitidis Group A polysaccharide antibody levels by enzyme-linked immunosorbent assay. Journal of Clinical Microbiology, 29, 1439–1446.

    PubMed  CAS  Google Scholar 

  26. Putlitz, J., Kubasek, W. L., Duchene, M., Marget, M., von Specht, B. U., & Domdey, H. (1990). Antibody production in baculovirus-infected insect cells. Biotechnology (NY), 8, 651–654.

    Article  Google Scholar 

  27. Ratnala, V. R., Swarts, H. G., VanOostrum, J., Leurs, R., DeGroot, H. J., Bakker, R. A., & DeGrip, W. J. (2004). Large-scale overproduction, functional purification and ligand affinities of the His-tagged human histamine H1 receptor. European Journal of Biochemistry, 271, 2636–2646.

    Article  PubMed  CAS  Google Scholar 

  28. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  29. Suzuki, T., Kaki, H., Naya, S., Murayama, S., Tatsui, A., Nagai, A., Takai, S., & Miyazaki, M. (2002). Recombinant human chymase produced by silkworm-baculovirus expression system: Its application for a chymase detection kit. Japanese Journal of Pharmacology, 90, 210–213.

    Article  PubMed  CAS  Google Scholar 

  30. Tan, W., & Lam, P. H. (1999). Expression and purification of a secreted functional mouse/human chimaeric antibody against bacterial endotoxin in baculovirus-infected insect cells. Biotechnology and Applied Biochemistry, 30, 59–64.

    PubMed  CAS  Google Scholar 

  31. Welch, R. W., Campbell, J., Toledo, A., Davis, D., Latzgo, H., Haupt, G., Love, K., Sly, J., Cohen, G., Eisenberg, R. Whitbeck, J. C., Aldaz-Carroll, L., Lou, H., Lenz, D., Patel, P., & Cerasoli, D. (2006). Rapid production of recombinant proteins utilizing the PERLXpress Platform. Bioprocessing Journal, 5, 63–70.

    Google Scholar 

  32. Wood, H. A., Trotter, K. M., Davis, T. R., & Hughes, P. R. (1993). Per os infectivity of preoccluded virions from polyhedrin-minus recombinant baculoviruses. Journal of Invertebrate Pathology, 62, 64–67.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant to Chesapeake PERL, Inc. from the Maryland Technology Development Corporation (Maryland TEDCO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. O’Connell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connell, K.P., Kovaleva, E., Campbell, J.H. et al. Production of a recombinant antibody fragment in whole insect larvae. Mol Biotechnol 36, 44–51 (2007). https://doi.org/10.1007/s12033-007-0014-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0014-4

Keywords

Navigation