Skip to main content

Shrink-Induced Biomimetic Wrinkled Substrates for Functional Cardiac Cell Alignment and Culture

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1181))

Abstract

The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM et al (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123:e18–e209

    Article  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  3. Reubinoff BE, Pera MF, Fong CY et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  CAS  Google Scholar 

  4. Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  Google Scholar 

  5. Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  CAS  Google Scholar 

  6. Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature 453:524–528

    Article  CAS  Google Scholar 

  7. Zhang J, Klos M, Wilson GF et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111:1125–1136

    Article  CAS  Google Scholar 

  8. Chow MZ, Boheler KR, Li RA (2013) Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Therapy 4(4):97

    Article  Google Scholar 

  9. Himmel HM (2013) Drug-induced functional cardiotoxicity screening in stem cell-derived human and mouse cardiomyocytes: Effects of reference compounds. J Pharmacol Toxicol Methods 68:97–111

    Article  CAS  Google Scholar 

  10. Pet L et al (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127(16):1677–1691

    Article  Google Scholar 

  11. Lexchin J (2005) Drug withdrawals from the Canadian market for safety reasons, 1963–2004. Can Med Assoc J 172:765–767

    Article  Google Scholar 

  12. Xu CH, Inokuma MS, Denham J et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  CAS  Google Scholar 

  13. Robertson C, Tran DD, George SC (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31:829–837

    Article  CAS  Google Scholar 

  14. Lieu DK, Liu J, Siu CW et al (2009) Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev 18:1493–1500

    Article  CAS  Google Scholar 

  15. Satin J, Itzhaki I, Rapoport S et al (2008) Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 26:1961–1972

    Article  CAS  Google Scholar 

  16. Hoffman BF (1962) Electrophysiology of the conducting system of the heart. Trans NY Acad Sci 24:886–890

    Article  CAS  Google Scholar 

  17. Peng S, Lacerda AE, Kirsch GE et al (2010) The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes. J Pharmacol Toxicol Methods 61:277–286

    Article  CAS  Google Scholar 

  18. Kim D-H, Lipke EA, Kim P et al (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci U S A 107:565–570

    Article  CAS  Google Scholar 

  19. Pins GD, Christiansen DL, Patel R et al (1997) Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J 73:2164–2172

    Article  CAS  Google Scholar 

  20. Grosberg A, Alford PW, McCain ML et al (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173

    Article  CAS  Google Scholar 

  21. Au HTH, Cheng I, Chowdhury MF et al (2007) Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials 28:4277–4293

    Article  CAS  Google Scholar 

  22. Luna JI, Ciriza J, Garcia-Ojeda ME et al (2011) Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells. Tissue Eng Part C Methods 17:579–588

    Article  Google Scholar 

  23. Grosberg A, Nesmith AP, Goss JA et al (2012) Muscle on a chip: In vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 65:126–135

    Article  CAS  Google Scholar 

  24. Badie N, Satterwhite L, Bursac N (2009) A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning. Ann Biomed Eng 37:2510–2521

    Article  Google Scholar 

  25. Bauwens CL, Peerani R, Niebruegge S et al (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310

    Article  Google Scholar 

  26. Dalby MJ, Riehle MO, Yarwood SJ et al (2003) Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp Cell Res 284:274–282

    Article  CAS  Google Scholar 

  27. Chen CS, Mrksich M, Huang S et al (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  CAS  Google Scholar 

  28. Au HTH, Cui B, Chu ZE et al (2009) Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip 9:564–575

    Article  CAS  Google Scholar 

  29. Engelmayr GC Jr, Cheng M, Bettinger CJ et al (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003–1010

    Article  CAS  Google Scholar 

  30. Chen A, Lieu DK, Freschauf L et al (2011) Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv Mater 23(48):5785–5791

    Article  CAS  Google Scholar 

  31. Fu C-C, Grimes A, Long M et al (2009) Tunable nanowrinkles on shape memory polymer sheets. Adv Mater 21:4472–4476

    Article  CAS  Google Scholar 

  32. Pamula E, De Cupere V, Dufrene YF et al (2004) Nanoscale organization of adsorbed collagen: Influence of substrate hydrophobicity and adsorption time. J Colloid Interface Sci 271:80–91

    Article  CAS  Google Scholar 

  33. Chen A, Lee E, Tu R et al (2013) Integrated Platform for Functional Monitoring of Biomimetic Heart Sheets Derived From Human Pluripotent Stem Cells. Biomaterials 35(2):675–83

    Article  Google Scholar 

  34. Wang J, Chen A, Lieu DK et al (2013) Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias. Biomaterials 34:8878–8886

    Article  CAS  Google Scholar 

  35. Li Y, Powell S, Brunette E et al (2005) Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 91:688–698

    Article  CAS  Google Scholar 

  36. Ludwig TE, Bergendahl V, Levenstein ME et al (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646

    Article  CAS  Google Scholar 

  37. Lee JB, Lee JE, Park JH et al (2005) Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod 72:42–49

    Article  CAS  Google Scholar 

  38. Ma J, Guo L, Fiene SJ et al (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol 301:H2006–H2017

    CAS  Google Scholar 

  39. Eremeev AV, Svetlakov AV, Polstianoy AM et al (2009) Derivation of a novel human embryonic stem cell line under serum-free and feeder-free conditions. Dokl Biol Sci 426:293–295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Khine Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mendoza, N., Tu, R., Chen, A., Lee, E., Khine, M. (2014). Shrink-Induced Biomimetic Wrinkled Substrates for Functional Cardiac Cell Alignment and Culture. In: Radisic, M., Black III, L. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 1181. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1047-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1047-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1046-5

  • Online ISBN: 978-1-4939-1047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics