Skip to main content

Cancer Cell Culture: The Basics and Two-Dimensional Cultures

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2645))

Abstract

Despite significant advances in investigative and therapeutic methodologies for cancer, 2D cell culture remains an essential and evolving competency in this fast-paced industry. From basic monolayer cultures and functional assays to more recent and ever-advancing cell-based cancer interventions, 2D cell culture plays a crucial role in cancer diagnosis, prognosis, and treatment. Research and development in this field call for a great deal of optimization, while the heterogenous nature of cancer itself demands personalized precision for its intervention. In this way, 2D cell culture is ideal, providing a highly adaptive and responsive platform, where skills can be honed and techniques modified. Furthermore, it is arguably the most efficient, economical, and sustainable methodology available to researchers and clinicians alike.

In this chapter, we discuss the history of cell culture and the varying types of cell and cell lines used today, the techniques used to characterize and authenticate them, the applications of 2D cell culture in cancer diagnosis and prognosis, and more recent developments in the area of cell-based cancer interventions and vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hudu SA, Alshrari AS, Syahida A, Sekawi Z (2016) Cell culture, technology: enhancing the culture of diagnosing human diseases. J Clin Diagn Res 10(3):De01-5. https://doi.org/10.7860/jcdr/2016/15837.7460

    Article  PubMed  Google Scholar 

  2. Roux W (1887) Beiträge zur Entwickelungsmechanik des Embryo. Arch Mikrosk Anat 29(1):157–212

    Article  Google Scholar 

  3. Yao T, Asayama Y (2017) Animal-cell culture media: history, characteristics, and current issues. Reprod Med Biol 16(2):99–117. https://doi.org/10.1002/rmb2.12024

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ljunggren C (1898) On the safe survival of skin epithelial cells outside of the human organism with special reference to skin transplantation. Nordiskt Medicinskt Arkiv 31:1–10

    Google Scholar 

  5. Maehle AH (2011) Ambiguous cells: the emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond 65(4):359–378. https://doi.org/10.1098/rsnr.2011.0023

    Article  PubMed  Google Scholar 

  6. Harnden DG (1977) Cell biology and cell culture methods—a review. In: Harkness RA, Cockburn F (eds) The cultured cell and inherited metabolic disease: monograph based upon proceedings of the fourteenth symposium of the society for the study of inborn errors of metabolism. Springer, Dordrecht, pp 3–15

    Chapter  Google Scholar 

  7. Fan W, Lin CS, Potluri P, Procaccio V, Wallace DC (2012) mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination. Genes Dev 26(4):384–394. https://doi.org/10.1101/gad.175802.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Philippeos C, Hughes RD, Dhawan A, Mitry RR (2012) Introduction to cell culture. Methods Mol Biol 806:1–13. https://doi.org/10.1007/978-1-61779-367-7_1

    Article  CAS  PubMed  Google Scholar 

  9. Langdon SP (2004) Characterization and authentication of cancer cell lines: an overview. Methods Mol Med 88:33–42. https://doi.org/10.1385/1-59259-406-9:33

    Article  CAS  PubMed  Google Scholar 

  10. Segeritz CP, Vallier L (2017) Cell culture: growing cells as model systems in vitro. Basic Sci Methods Clin Res:151–172. https://doi.org/10.1016/B978-0-12-803077-6.00009-6. Epub 2017 Apr 7

  11. Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T (2021) From donor to the lab: a fascinating journey of primary cell lines. Front Cell Dev Biol:9. https://doi.org/10.3389/fcell.2021.711381

  12. Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2(1):1–5. https://doi.org/10.4161/spmg.19885

    Article  PubMed  PubMed Central  Google Scholar 

  13. PromoCell (2019) Human primary cells and immortal cell lines: differences and advantages. promocell.com: PromoCell

  14. Gilgenkrantz S (2014) Sixty years of HeLa cell cultures. Hist Sci Med 48(1):139–144

    PubMed  Google Scholar 

  15. Stelzer-Braid S, Walker GJ, Aggarwal A, Isaacs SR, Yeang M, Naing Z et al (2020) Virus isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for diagnostic and research purposes. Pathology 52(7):760–763. https://doi.org/10.1016/j.pathol.2020.09.012

    Article  CAS  PubMed  Google Scholar 

  16. Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stütz AM et al (2013) The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3(8):1213–1224. https://doi.org/10.1534/g3.113.005777

    Article  CAS  PubMed  Google Scholar 

  17. Lucey BP, Nelson-Rees WA, Hutchins GM (2009) Henrietta Lacks, HeLa cells, and cell culture contamination. Arch Pathol Lab Med 133(9):1463–1467. https://doi.org/10.5858/133.9.1463

    Article  PubMed  Google Scholar 

  18. Gillet JP, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105(7):452–458. https://doi.org/10.1093/jnci/djt007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74(9):2377–2384. https://doi.org/10.1158/0008-5472.Can-13-2971

    Article  CAS  PubMed  Google Scholar 

  20. Almeida JL, Cole KD, Plant AL (2016) Standards for cell line authentication and beyond. PLoS Biol 14(6):e1002476. https://doi.org/10.1371/journal.pbio.1002476

    Article  PubMed  PubMed Central  Google Scholar 

  21. Furlong MT, Hough CD, Sherman-Baust CA, Pizer ES, Morin PJ (1999) Evidence for the colonic origin of ovarian cancer cell line SW626. J Natl Cancer Inst 91(15):1327–1328. https://doi.org/10.1093/jnci/91.15.1327

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y-HK, Ogando CR, Wang See C, Chang T-Y, Barabino GA (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9(1):131. https://doi.org/10.1186/s13287-018-0876-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V et al (2018) 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919. https://doi.org/10.5114/aoms.2016.63743

    Article  CAS  PubMed  Google Scholar 

  24. O’Brien SJ (2001) Cell culture forensics. Proc Natl Acad Sci 98(14):7656–7658. https://doi.org/10.1073/pnas.141237598

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stacey GN (2000) Cell contamination leads to inaccurate data: we must take action now. Nature 403(6768):356. https://doi.org/10.1038/35000394

    Article  CAS  PubMed  Google Scholar 

  26. Rojas A, Gonzalez I (2018) Cell line cross-contamination: a detrimental issue in current biomedical research. Cell Biol Int 42(3):272. https://doi.org/10.1002/cbin.10904

    Article  PubMed  Google Scholar 

  27. Stacey GB, Hawkins E, Hawkins JR (1999) DNA fingerprinting and characterisation of animal cell lines. In: Portner R (ed) Animal cell biotechnology: methods and protocols. Methods in biotechnology. Springer Nature

    Google Scholar 

  28. Nelson-Rees WA, Flandermeyer RR, Hawthorne PK (1974) Banded marker chromosomes as indicators of intraspecies cellular contamination. Science (New York, NY) 184(4141):1093–1096. https://doi.org/10.1126/science.184.4141.1093

    Article  CAS  Google Scholar 

  29. Nelson-Rees WA, Daniels DW, Flandermeyer RR (1981) Cross-contamination of cells in culture. Science (New York, NY) 212(4493):446–452. https://doi.org/10.1126/science.6451928

    Article  CAS  Google Scholar 

  30. Nelson-Rees WA, Flandermeyer RR (1976) HeLa cultures defined. Science (New York, NY) 191(4222):96–98. https://doi.org/10.1126/science.1246601

    Article  CAS  Google Scholar 

  31. Gartler SM (1968) Apparent HeLa cell contamination of human Heteroploid cell lines. Nature 217(5130):750–751. https://doi.org/10.1038/217750a0

    Article  CAS  PubMed  Google Scholar 

  32. MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer 83(4):555–563. https://doi.org/10.1002/(sici)1097-0215(19991112)83:4<555::aid-ijc19>3.0.co;2-2

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan J, Hukku B (1998) Chapter 11: Cell line characterization and authentication. In: Mather JP, Barnes D (eds) Methods in cell biology. Academic, pp 203–216

    Google Scholar 

  34. Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89. https://doi.org/10.3389/fcell.2016.00089

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kannan TP, Zilfalil BA (2009) Cytogenetics: past, present and future. Malays J Med Sci 16(2):4–9

    PubMed  PubMed Central  Google Scholar 

  36. Guo B, Han X, Wu Z, Da W, Zhu H (2014) Spectral karyotyping: an unique technique for the detection of complex genomic rearrangements in leukemia. Transl Pediatr 3(2):135–139. https://doi.org/10.3978/j.issn.2224-4336.2014.01.02

    Article  PubMed  PubMed Central  Google Scholar 

  37. Szuhai K, Tanke HJ (2006) COBRA: combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat Protoc 1(1):264–275. https://doi.org/10.1038/nprot.2006.41

    Article  CAS  PubMed  Google Scholar 

  38. Henegariu O, Heerema NA, Bray-Ward P, Ward DC (1999) Colour-changing karyotyping: an alternative to M-FISH/SKY. Nat Genet 23(3):263–264. https://doi.org/10.1038/15437

    Article  CAS  PubMed  Google Scholar 

  39. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314(6006):67–73. https://doi.org/10.1038/314067a0

    Article  CAS  PubMed  Google Scholar 

  40. Nicholson WL, Comer JA, Sumner JW, Gingrich-Baker C, Coughlin RT, Magnarelli LA et al (1997) An indirect immunofluorescence assay using a cell culture-derived antigen for detection of antibodies to the agent of human granulocytic ehrlichiosis. J Clin Microbiol 35(6):1510–1516. https://doi.org/10.1128/jcm.35.6.1510-1516.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shampo MA, Kyle RA, Kary B (2002) Mullis—Nobel laureate for procedure to replicate DNA. Mayo Clin Proc 77(7):606. https://doi.org/10.4065/77.7.606

    Article  PubMed  Google Scholar 

  42. O’Brien SU, Kleiner G, Olson R, Shannon JE (1977) Enzyme polymorphisms as genetic signatures in human cell cultures. Science (New York, NY) 195(4284):1345–1348. https://doi.org/10.1126/science.841332

    Article  Google Scholar 

  43. Klaus GS, Dörthe G, Hans GD (1995) Isoenzyme analysis as a rapid method for the examination of the species identity of cell cultures. In Vitro Cell Dev Biol Anim 31(2):115–119

    Article  Google Scholar 

  44. Nims RW, Shoemaker AP, Bauernschub MA, Rec LJ, Harbell JW (1998) Sensitivity of isoenzyme analysis for the detection of interspecies cell line cross-contamination. In Vitro Cell Dev Biol Anim 34(1):35–39. https://doi.org/10.1007/s11626-998-0050-9

    Article  CAS  PubMed  Google Scholar 

  45. Fernandes IR, Russo FB, Pignatari GC, Evangelinellis MM, Tavolari S, Muotri AR et al (2016) Fibroblast sources: where can we get them? Cytotechnology 68(2):223–228. https://doi.org/10.1007/s10616-014-9771-7

    Article  CAS  PubMed  Google Scholar 

  46. Stacey GN (2011) Cell culture contamination. Methods Mol Biol 731:79–91. https://doi.org/10.1007/978-1-61779-080-5_7

    Article  CAS  PubMed  Google Scholar 

  47. Vignon C, Debeissat C, Georget M-T, Bouscary D, Gyan E, Rosset P et al (2013) Flow cytometric quantification of all phases of the cell cycle and apoptosis in a two-color fluorescence plot. PLoS One 8(7):e68425. https://doi.org/10.1371/journal.pone.0068425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pekle E, Smith A, Rosignoli G, Sellick C, Smales CM, Pearce C (2019) Application of imaging flow cytometry for the characterization of intracellular attributes in Chinese hamster ovary cell lines at the single-cell level. Biotechnol J 14(7):e1800675. https://doi.org/10.1002/biot.201800675

    Article  CAS  PubMed  Google Scholar 

  49. Puts JJ, Vooijs GP, Huysmans A, van Aspert A, Ramaekers FC (1986) Cytoskeletal proteins as tissue-specific markers in cytopathology. Exp Cell Biol 54(2):73–79. https://doi.org/10.1159/000163346

    Article  CAS  PubMed  Google Scholar 

  50. Jedlitschky G, Hoffmann U, Kroemer HK (2006) Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2(3):351–366. https://doi.org/10.1517/17425255.2.3.351

    Article  CAS  PubMed  Google Scholar 

  51. Pawlak KJ, Wiebe JP (2007) Regulation of estrogen receptor (ER) levels in MCF-7 cells by progesterone metabolites. J Steroid Biochem Mol Biol 107(3–5):172–179. https://doi.org/10.1016/j.jsbmb.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  52. Cohen JS, Benton AS, Nwachukwu F, Ozedirne T, Teach SJ, Freishtat RJ (2010) P-glycoprotein transporter expression on a549 respiratory epithelial cells is positively correlated with intracellular dexamethasone levels. J Investig Med 58(8):991–994

    Google Scholar 

  53. Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C (2007) The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 168(1):66–73. https://doi.org/10.1016/j.cbi.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  54. Bandele OJ, Santillo MF, Ferguson M, Wiesenfeld PL (2012) In vitro toxicity screening of chemical mixtures using HepG2/C3A cells. Food Chem Toxicol 50(5):1653–1659. https://doi.org/10.1016/j.fct.2012.02.016

    Article  CAS  PubMed  Google Scholar 

  55. Mossoba ME, Sprando RL (2020) In vitro to in vivo concordance of toxicity using the human proximal tubule cell line HK-2. Int J Toxicol 39(5):452–464. https://doi.org/10.1177/1091581820942534

    Article  CAS  PubMed  Google Scholar 

  56. Swain RJ, Kemp SJ, Goldstraw P, Tetley TD, Stevens MM (2010) Assessment of cell line models of primary human cells by Raman spectral phenotyping. Biophys J 98(8):1703–1711. https://doi.org/10.1016/j.bpj.2009.12.4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fisher T (2022) Gibco cell culture basics: cell lines. Accessed 20 Apr 2022

    Google Scholar 

  58. Vaidyanathan R, Soon RH, Zhang P, Jiang K, Lim CT (2018) Cancer diagnosis: from tumor to liquid biopsy and beyond. Lab Chip 19(1):11–34. https://doi.org/10.1039/c8lc00684a

    Article  CAS  PubMed  Google Scholar 

  59. Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S et al (2022) Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 21(1):79. https://doi.org/10.1186/s12943-022-01543-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maly V, Maly O, Kolostova K, Bobek V (2019) Circulating tumor cells in diagnosis and treatment of lung cancer. In Vivo 33(4):1027–1037. https://doi.org/10.21873/invivo.11571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Wit S, Zeune LL, Hiltermann TJN, Groen HJM, Dalum GV, Terstappen L (2018) Classification of cells in CTC-enriched samples by advanced image analysis. Cancers (Basel) 10(10). https://doi.org/10.3390/cancers10100377

  62. Spell DW, Jones DV Jr, Harper WF, David BJ (2004) The value of a complete blood count in predicting cancer of the colon. Cancer Detect Prev 28(1):37–42. https://doi.org/10.1016/j.cdp.2003.10.002

    Article  PubMed  Google Scholar 

  63. Jaime-Pérez JC, García-Arellano G, Herrera-Garza JL, Marfil-Rivera LJ, Gómez-Almaguer D (2019) Revisiting the complete blood count and clinical findings at diagnosis of childhood acute lymphoblastic leukemia: 10-year experience at a single center. Hematol Transfus Cell Ther 41(1):57–61. https://doi.org/10.1016/j.htct.2018.05.010

    Article  PubMed  Google Scholar 

  64. Liu Y, Xu J (2019) High-resolution microscopy for imaging cancer pathobiology. Curr Pathobiol Rep 7(3):85–96. https://doi.org/10.1007/s40139-019-00201-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kumar R, Srivastava R, Srivastava S (2015) Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. J Med Eng 2015:457906. https://doi.org/10.1155/2015/457906

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gurina TS, Simms L (2022) Histology, Staining. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC

    Google Scholar 

  67. Amedee RG, Dhurandhar NR (2001) Fine-needle aspiration biopsy. Laryngoscope 111(9):1551–1557. https://doi.org/10.1097/00005537-200109000-00011

    Article  CAS  PubMed  Google Scholar 

  68. Bilous M (2010) Breast core needle biopsy: issues and controversies. Mod Pathol 23(Suppl 2):S36–S45. https://doi.org/10.1038/modpathol.2010.34

    Article  PubMed  Google Scholar 

  69. Beard CJ, Ponnarasu S, Schmieder GJ (2022) Excisional Biopsy. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC

    Google Scholar 

  70. Pflugfelder A, Weide B, Eigentler TK, Forschner A, Leiter U, Held L et al (2010) Incisional biopsy and melanoma prognosis: facts and controversies. Clin Dermatol 28(3):316–318. https://doi.org/10.1016/j.clindermatol.2009.06.013

    Article  PubMed  Google Scholar 

  71. Lin X, Lin R, Lu F, Yang Y, Wang C, Fang H et al (2021) Laparoscopic biopsy and staging for locally advanced pancreatic cancer: experiences of 76 consecutive patients in a single institution. Langenbeck’s Arch Surg 406(7):2315–2323. https://doi.org/10.1007/s00423-021-02199-5

    Article  Google Scholar 

  72. Reid BJ, Weinstein WM, Lewin KJ, Haggitt RC, VanDeventer G, DenBesten L et al (1988) Endoscopic biopsy can detect high-grade dysplasia or early adenocarcinoma in Barrett’s esophagus without grossly recognizable neoplastic lesions. Gastroenterology 94(1):81–90. https://doi.org/10.1016/0016-5085(88)90613-0

    Article  CAS  PubMed  Google Scholar 

  73. Nischal U, Nischal K, Khopkar U (2008) Techniques of skin biopsy and practical considerations. J Cutan Aesthet Surg 1(2):107–111. https://doi.org/10.4103/0974-2077.44174

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ayre JE (1947) Selective cytology smear for diagnosis of cancer. Am J Obstet Gynecol 53(4):609–617. https://doi.org/10.1016/0002-9378(47)90278-0

    Article  CAS  PubMed  Google Scholar 

  75. Bal MS, Goyal R, Suri AK, Mohi MK (2012) Detection of abnormal cervical cytology in Papanicolaou smears. J Cytol 29(1):45–47. https://doi.org/10.4103/0970-9371.93222

    Article  PubMed  PubMed Central  Google Scholar 

  76. Karam R, Conner B, LaDuca H, McGoldrick K, Krempely K, Richardson ME et al (2019) Assessment of diagnostic outcomes of RNA genetic testing for hereditary cancer. JAMA Netw Open 2(10):e1913900. https://doi.org/10.1001/jamanetworkopen.2019.13900

    Article  PubMed  PubMed Central  Google Scholar 

  77. Carethers JM (2014) DNA testing and molecular screening for colon cancer. Clin Gastroenterol Hepatol 12(3):377–381. https://doi.org/10.1016/j.cgh.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  78. Greene MH (1997) Genetics of breast cancer. Mayo Clin Proc 72(1):54–65. https://doi.org/10.4065/72.1.54

    Article  CAS  PubMed  Google Scholar 

  79. Bouchard L, Blancquaert I, Eisinger F, Foulkes WD, Evans G, Sobol H et al (2004) Prevention and genetic testing for breast cancer: variations in medical decisions. Soc Sci Med 58(6):1085–1096. https://doi.org/10.1016/s0277-9536(03)00263-6

    Article  PubMed  Google Scholar 

  80. Fernandez-Rozadilla C, Simões AR, Lleonart ME, Carnero A, Carracedo Á (2021) Tumor profiling at the service of cancer therapy. Front Oncol 10:595613. https://doi.org/10.3389/fonc.2020.595613

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chakravarty D, Solit DB (2021) Clinical cancer genomic profiling. Nat Rev Genet 22(8):483–501. https://doi.org/10.1038/s41576-021-00338-8

    Article  CAS  PubMed  Google Scholar 

  82. Harnan S, Tappenden P, Cooper K, Stevens J, Bessey A, Rafia R et al (2019) Tumour profiling tests to guide adjuvant chemotherapy decisions in early breast cancer: a systematic review and economic analysis. Health Technol Assess 23(30):1–328. https://doi.org/10.3310/hta23300

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV (2020) Cell culture based in vitro test systems for anticancer drug screening. Front Bioeng Biotechnol 8:322. https://doi.org/10.3389/fbioe.2020.00322

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mingaleeva RN, Solovieva VV, Blatt NL, Rizvanov AA (2013) Application of cell and tissue cultures for potential anti-cancer/oncology drugs screening in vitro. Cell Transplant Tissue Eng 8(2):20–28

    Google Scholar 

  85. Borenfreund E, Babich H, Martin-Alguacil N (1988) Comparisons of two in vitro cytotoxicity assays—the neutral red (NR) and tetrazolium MTT tests. Toxicol In Vitro 2(1):1–6. https://doi.org/10.1016/0887-2333(88)90030-6

    Article  CAS  PubMed  Google Scholar 

  86. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339

    Article  CAS  PubMed  Google Scholar 

  87. Gutiérrez L, Stepien G, Gutiérrez L, Pérez-Hernández M, Pardo J, Pardo J et al (2017) 1.09 – Nanotechnology in drug discovery and development. In: Chackalamannil S, Rotella D, Ward SE (eds) Comprehensive medicinal chemistry III. Elsevier, Oxford, pp 264–295

    Chapter  Google Scholar 

  88. Kamiloglu S, Sari G, Ozdal T, Capanoglu E (2020) Guidelines for cell viability assays. Food Front 1(3):332–349. https://doi.org/10.1002/fft2.44

    Article  Google Scholar 

  89. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018;2018(6): https://doi.org/10.1101/pdb.prot095505

    Book  Google Scholar 

  90. Mueller H, Kassack MU, Wiese M (2004) Comparison of the usefulness of the MTT, ATP, and Calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J Biomol Screen 9(6):506–515. https://doi.org/10.1177/1087057104265386

    Article  CAS  PubMed  Google Scholar 

  91. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc. 2018;2018(6). doi: https://doi.org/10.1101/pdb.prot095497

    Book  Google Scholar 

  92. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22(5):1304–1309. https://doi.org/10.1093/humrep/dem011

    Article  CAS  PubMed  Google Scholar 

  93. Gong X, Liang Z, Yang Y, Liu H, Ji J, Fan Y (2020) A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process. Regen Biomater 7(3):271–281. https://doi.org/10.1093/rb/rbaa002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nowak E, Kammerer S, Küpper JH (2018) ATP-based cell viability assay is superior to trypan blue exclusion and XTT assay in measuring cytotoxicity of anticancer drugs Taxol and Imatinib, and proteasome inhibitor MG-132 on human hepatoma cell line HepG2. Clin Hemorheol Microcirc 69(1–2):327–336. https://doi.org/10.3233/ch-189120

    Article  CAS  PubMed  Google Scholar 

  95. Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R et al (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6(1):19103. https://doi.org/10.1038/srep19103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ahmann FR, Garewal HS, Schifman R, Celniker A, Rodney S (1987) Intracellular adenosine triphosphate as a measure of human tumor cell viability and drug modulated growth. In Vitro Cell Dev Biol 23(7):474–480. https://doi.org/10.1007/bf02628417

    Article  CAS  PubMed  Google Scholar 

  97. Sharma S, Neale MH, Di Nicolantonio F, Knight LA, Whitehouse PA, Mercer SJ et al (2003) Outcome of ATP-based tumor chemosensitivity assay directed chemotherapy in heavily pre-treated recurrent ovarian carcinoma. BMC Cancer 3:19. https://doi.org/10.1186/1471-2407-3-19

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bancone G, Kalnoky M, Chu CS, Chowwiwat N, Kahn M, Malleret B et al (2017) The G6PD flow-cytometric assay is a reliable tool for diagnosis of G6PD deficiency in women and anaemic subjects. Sci Rep 7(1):9822. https://doi.org/10.1038/s41598-017-10045-2

    Article  PubMed  PubMed Central  Google Scholar 

  99. Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:A3.B.1-a3.B. https://doi.org/10.1002/0471142735.ima03bs111

    Article  Google Scholar 

  100. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV (2014) In vitro cell migration and invasion assays. J Vis Exp 88:51046. https://doi.org/10.3791/51046

    Article  CAS  Google Scholar 

  101. Pijuan J, Barceló C, Moreno DF, Maiques O, Sisó P, Marti RM et al (2019) In vitro cell migration, invasion, and adhesion assays: from cell imaging to data analysis. Front Cell Dev Biol 7:107. https://doi.org/10.3389/fcell.2019.00107

    Article  PubMed  PubMed Central  Google Scholar 

  102. Weitz-Schmidt G, Chreng S (2012) Cell adhesion assays. Methods Mol Biol 757:15–30. https://doi.org/10.1007/978-1-61779-166-6_2

    Article  CAS  PubMed  Google Scholar 

  103. Kucik DF, Wu C (2005) Cell-adhesion assays. Methods Mol Biol 294:43–54. https://doi.org/10.1385/1-59259-860-9:043

    Article  CAS  PubMed  Google Scholar 

  104. Chen HC (2005) Boyden chamber assay. Methods Mol Biol 294:15–22. https://doi.org/10.1385/1-59259-860-9:015

    Article  PubMed  Google Scholar 

  105. Humphries MJ (2009) Cell adhesion assays. Methods Mol Biol 522:203–210. https://doi.org/10.1007/978-1-59745-413-1_14

    Article  CAS  PubMed  Google Scholar 

  106. Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. https://doi.org/10.1038/nprot.2007.30

    Article  CAS  PubMed  Google Scholar 

  107. Martinotti S, Ranzato E (2020) Scratch wound healing assay. Methods Mol Biol 2109:225–229. https://doi.org/10.1007/7651_2019_259

    Article  CAS  PubMed  Google Scholar 

  108. Yoo SY, Kwon SM (2013) Angiogenesis and its therapeutic opportunities. Mediat Inflamm 2013:127170. https://doi.org/10.1155/2013/127170

    Article  CAS  Google Scholar 

  109. Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON, Lopez-Gonzalez JS (2019) Contribution of angiogenesis to inflammation and cancer. Front Oncol 9:1399. https://doi.org/10.3389/fonc.2019.01399

    Article  PubMed  PubMed Central  Google Scholar 

  110. PhD SR (2015) What is precision medicine. Accessed 25 Feb 2015

    Google Scholar 

  111. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20(11):651–668. https://doi.org/10.1038/s41577-020-0306-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M et al (2013) Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol 31(10):928–933. https://doi.org/10.1038/nbt.2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Copier J, Dalgleish A (2006) Overview of tumor cell-based vaccines. Int Rev Immunol 25(5–6):297–319. https://doi.org/10.1080/08830180600992472

    Article  CAS  PubMed  Google Scholar 

  114. Motz GT, Coukos G (2011) The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11(10):702–711. https://doi.org/10.1038/nri3064

    Article  CAS  PubMed  Google Scholar 

  115. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression – implications for anticancer therapy. Nat Rev Clin Oncol 16(6):356–371. https://doi.org/10.1038/s41571-019-0175-7

    Article  CAS  PubMed  Google Scholar 

  116. Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39(1):49–60. https://doi.org/10.1016/j.immuni.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  117. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68. https://doi.org/10.1126/science.aaa4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342. https://doi.org/10.1097/00002371-200307000-00005

    Article  PubMed  PubMed Central  Google Scholar 

  119. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308. https://doi.org/10.1038/nrc2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365. https://doi.org/10.1126/science.aar6711

    Article  CAS  PubMed  Google Scholar 

  121. Kakarla S, Gottschalk S (2014) CAR T cells for solid tumors: armed and ready to go? Cancer J 20(2):151–155. https://doi.org/10.1097/PPO.0000000000000032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11(4):69. https://doi.org/10.1038/s41408-021-00459-7

    Article  PubMed  PubMed Central  Google Scholar 

  123. Jan M, Scarfò I, Larson RC, Walker A, Schmidts A, Guirguis AA et al (2021) Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med 13(575). https://doi.org/10.1126/scitranslmed.abb6295

  124. ClinicalTrials.gov. CAR-Ts for cancer therapy, recruiting and not recruiting 2022 [updated 06 June 2022. 01 June:[Available from: https://clinicaltrials.gov/ct2/results?term=CAR-T&cond=cancer&Search=Apply&recrs=a&recrs=d&age_v=&gndr=&type=&rslt=

  125. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E et al (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A 99(25):16168–16173. https://doi.org/10.1073/pnas.242600099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim JJ (2015) Applications of iPSCs in cancer research. Biomark Insights 10(Suppl 1):125–131. https://doi.org/10.4137/bmi.S20065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L et al (2007) NK cells and cancer. J Immunol 178(7):4011–4016. https://doi.org/10.4049/jimmunol.178.7.4011

    Article  CAS  PubMed  Google Scholar 

  128. ClinicalTrials.gov. CYNK-001, Phase II, GBM: ClinicalTrials.gov; 2022 [updated 02 June 2022. 02/06/2022:[Available from: https://clinicaltrials.gov/ct2/show/NCT05218408?term=cynk-001&phase=1&draw=2&rank=1

  129. ClinicalTrials.gov (2022) OnKord, Phase II clinical trials, AML. ClinicalTrials.gov

  130. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J (2021) NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol 14(1):7. https://doi.org/10.1186/s13045-020-01014-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bald T, Krummel MF, Smyth MJ, Barry KC (2020) The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol 21(8):835–847. https://doi.org/10.1038/s41590-020-0728-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Srivatsan S, Patel JM, Bozeman EN, Imasuen IE, He S, Daniels D et al (2014) Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum Vaccin Immunother 10(1):52–63. https://doi.org/10.4161/hv.26568

    Article  CAS  PubMed  Google Scholar 

  133. Andersen BM, Ohlfest JR (2012) Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Lett 325(2):155–164. https://doi.org/10.1016/j.canlet.2012.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Simons JW, Sacks N (2006) Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol Oncol 24(5):419–424. https://doi.org/10.1016/j.urolonc.2005.08.021

    Article  CAS  PubMed  Google Scholar 

  135. Santos PM, Butterfield LH (2018) Dendritic cell-based cancer vaccines. J Immunol 200(2):443–449. https://doi.org/10.4049/jimmunol.1701024

    Article  CAS  PubMed  Google Scholar 

  136. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N (2021) Therapeutic cancer vaccines. Nat Rev Cancer 21(6):360–378. https://doi.org/10.1038/s41568-021-00346-0

    Article  CAS  PubMed  Google Scholar 

  137. Blass E, Ott PA (2021) Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 18(4):215–229. https://doi.org/10.1038/s41571-020-00460-2

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ganzinger M, He S, Breuhahn K, Knaup P (2012) On the ontology based representation of cell lines. PLoS One 7:e48584. https://doi.org/10.1371/journal.pone.0048584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Inc. CB (2014) Cell adhesion, migration and invasion assays. Accessed 09 June 2022

    Google Scholar 

  140. Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT et al (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14(10):2115–2124. https://doi.org/10.1261/rna.1162708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107(1):40–45. https://doi.org/10.1073/pnas.0912407107

    Article  PubMed  Google Scholar 

  142. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652. https://doi.org/10.1158/0008-5472.Can-10-3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Corominas-Faja B, Cufí S, Oliveras-Ferraros C, Cuyàs E, López-Bonet E, Lupu R et al (2013) Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 12(18):3109–3124. https://doi.org/10.4161/cc.26173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim J, Hoffman JP, Alpaugh RK, Rhim AD, Reichert M, Stanger BZ et al (2013) An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep 3(6):2088–2099. https://doi.org/10.1016/j.celrep.2013.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tutty, M.A., Holmes, S., Prina-Mello, A. (2023). Cancer Cell Culture: The Basics and Two-Dimensional Cultures. In: Movia, D., Prina-Mello, A. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 2645. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3056-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3056-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3055-6

  • Online ISBN: 978-1-0716-3056-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics