Skip to main content
Log in

Isoenzyme analysis as a rapid method for the examination of the species identity of cell cultures

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

One of the major problems in cell culturing is the misidentification or cross-contamination of authentic continuous cell lines. We applied a rapid and efficient isoelectric focusing (IEF) technique for the routine analysis to detect interspecies contamination of cell cultures and for the identification of unknown animal cell lines. The method is based on the isoelectric separation of a specific set of intracellular enzymes which can be used to distinguish between cell lines of human, murine, or other mammalian origin. By means of preformed agarose gels, standardized conditions and equipment, this technique is especially applicable for routine work and allows the analysis of a large number of unknown samples with reproducible results. One hundred seventy-seven cell lines which have been sent to the Department of Human and Animal Cell Cultures at the DSM (Deutsche Sammlung von Mikroorganismen and Zellkulturen) were analyzed for species authentication; only three cell lines were found not to be of the presumed species. Our study strongly emphasizes standardized IEF as an efficient and rapid method for routinely monitoring the authenticity of cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drexler, H. G.; MacLeod, R. A. F.; Quentmeier, H., et al. DSM-catalogue of human and animal cell lines, 4th edition, Braunschweig 1994.

  2. Ferrone, S.; Pellegrino, M. A.; Reisfeld, R. A. A. Rapid method for direct HLA-typing of cultured lymphoid cells. J. Immunol. 107:613–615; 1971.

    PubMed  CAS  Google Scholar 

  3. Fey, M. F.; Tobler, A. Assessment of DNA fingerprinting as a method for validating the identity of cancer cell lines maintained in long-term culture. Nucleic Acids Res. 19:3464; 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Fogh, J.; Wright, W. C.; Loveless, J. D. Absence of HeLa contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst. 58:209–215; 1977.

    PubMed  CAS  Google Scholar 

  5. Freshney, R. I., ed. Culture of animal cells. A manual of basic techniques. New York: Wiley-Liss; 1987.

    Google Scholar 

  6. Gartler, S. M. Apparent HeLa cell contamination of human heteroploid cell lines. Nature 217:750–751; 1968.

    Article  PubMed  CAS  Google Scholar 

  7. Gehlsen, K.; Engvall, E.; Dillner, L., et al. Correction: RuGli cell line not of human origin. Science 245:342–343; 1988.

    Google Scholar 

  8. Gignac, S. M.; Uphoff, C. C.; MacLeod, R. A. F., et al. Treatment of mycoplasma-contaminated continuous cell lines with Mycoplasma Removal Agent (MRA). Leukemia Res. 16:815–822; 1992.

    Article  CAS  Google Scholar 

  9. Gignac, S. M.; Steube, K. G.; Schleithoff, L., et al. Multiparameter approach in the identification of cross contaminated leukemia cell lines. Leukemia & Lymphoma 10:359–368; 1993.

    Article  CAS  Google Scholar 

  10. Gilbert, D. A.; Reid, Y. A.; White, C., et al. Application of DNA fingerprinting for cell line individualization. Am. J. Hum. Genet. 47:499–514; 1990.

    PubMed  CAS  Google Scholar 

  11. Halton, D. M.; Peterson, W. D.; Hukku, B. Cell culture quality control by rapid isoenzymatic characterization. In Vitro 19:26–24; 1983.

    Article  Google Scholar 

  12. Häne, B.; Tümmler, M.; Jäger, K., et al. Differences in DNA fingerprints of continuous leukemia-lymphoma cell lines from different sources. Leukemia 6:1129–1133; 1992.

    PubMed  Google Scholar 

  13. Häne, B. G.; Jäger, K.; Drexler, H. G. The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14:967–972; 1993.

    Article  PubMed  Google Scholar 

  14. Harris, H.; Gang, D. L.; Quay, S. C., et al. Contamination of Hodgkin’s disease cell cultures. Nature 289:228–230; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Hay, R. J.; Macy, M.; Chen, T. R. Mycoplasma infection of cultured cells. Nature 339:487–488; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Hay, R. J.; Caputo, J.; Macy, M. L., eds. ATCC: Quality control; Methods for cell lines. Rockville, MD: ATCC Press; 1992.

    Google Scholar 

  17. Hsu, S. H.; Schacter, B. Z.; Delaney, N. L., et al. Genetic characteristics of the HeLa cell. Science 191:392–394; 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Hukku, B.; Halton, D. M.; Mally, M., et al. Cell characterization by use of multiple genetic markers in eukaryotic cell cultures. In: Acton, R. T.; Lynn, J. D., eds. Eukaryotic cell cultures, basics and applications. New York: Plenum Press; 1984:13–31.

    Google Scholar 

  19. Jakoby, W. B.; Pastan, I., Cell Culture. Methods in enzymology vol. LVIII. San Diego: Academic Press; 1979.

    Google Scholar 

  20. Luczak, J.; Knower, S. A.; Cox, M. S., et al. Mycoplasma contamination detected in cell lines and their products from 1985 to the present. In Vitro Cell. Dev. Biol. 27:122A; 1991.

  21. MacLeod, R. A. F.; Häne, B.; Drexler, H. G. Cell lines and DNA fingerprinting. In Vitro Cell. Dev. Biol. 28:591–592; 1992.

    Google Scholar 

  22. Macy, M. L. Identification of cell line species by isoenzyme analysis. TCA Manual 4:833–836; 1978.

    Article  Google Scholar 

  23. McGarrity, G. J.; Sarama, J.; Vanaman, V. Cell culture techniques. Am. Soc. Microbiol. 51:170–183; 1985.

    Google Scholar 

  24. Nelson-Rees, W. A.; Daniels, D. W.; Flandermeyer, R. R. Cross contamination of cells in culture. Science 212:446–452; 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Nelson-Rees, W. A.; Flandermeyer, R. R.; Hawthorne, P. K. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184:1093–1096; 1974.

    Article  PubMed  CAS  Google Scholar 

  26. Nelson-Rees, W. A. The identification and monitoring of cell line specificity. Prog. Clin. Biol. Res. 26:25–79; 1978.

    PubMed  CAS  Google Scholar 

  27. O’Brien, S. J.; Kleiner, G.; Olson, R., et al. Enzyme polymorphisms as genetic signatures in human cell cultures. Science 195:1345–1348; 1977.

    Article  PubMed  CAS  Google Scholar 

  28. O’Brien, S. J.; Shannon, J. E.; Gail, M. H. A molecular approach to the identification and individualization of human and animal cells in culture: isozyme and allozyme genetic signatures. In Vitro 16:119–135; 1980.

    PubMed  CAS  Google Scholar 

  29. Peterson, W. D.; Simpson, W. F.; Hukku, B. Cell culture characterization: monitoring for cell identification. In: Jakoby, W. B.; Pastan, I., eds. Cell culture. Methods in enzymology, vol. LVIII. San Diego: Academic Press; 1979:164–178.

    Google Scholar 

  30. Pollard, J. W.; Walker, J. M., eds. Animal cell culture. Methods in molecular biology. Clifton, NJ: Humana Press; 1989.

    Google Scholar 

  31. Povey, S.; Hopkinson, D. A.; Harris, H., et al. Characterization of human cell lines and differentiation from HeLa by enzyme typing. Nature 264:60–63; 1976.

    Article  PubMed  CAS  Google Scholar 

  32. Quentmeier, H.; Brauer, S.; Pettit, G. R., et al. Cytostatic effects of dolastatin 10 and dolastatin 15 on human leukemia cell lines. Leukemia & Lymphoma 6:245–250; 1992.

    Google Scholar 

  33. Seabright, M. A rapid banding technique for human chromosomes. Lancet 2:971–972; 1971.

    Article  PubMed  CAS  Google Scholar 

  34. Simpson, W. F.; Stulberg, C. S.; Peterson, W. D. Monitoring species of cells in culture by immunofluorescence. TCA Manual 4:771–774; 1978.

    Article  Google Scholar 

  35. Stacey, G. DNA fingerprinting and the characterization of cell lines. Cytotechnology 6:91–92; 1991.

    Article  PubMed  CAS  Google Scholar 

  36. Stulberg, C. S.; Peterson, W. D.; Simpson, W. F. Identification of cells in culture. Am. J. Hematol. 1:237–242; 1976.

    Article  PubMed  CAS  Google Scholar 

  37. Stulberg, C. S. Extrinsic cell contamination of tissue culture. In: Fogh, J. ed. Contamination in tissue culture. New York: Academic Press; 1973:1–27.

    Google Scholar 

  38. Thacker, J.; Webb, M. B.; Debenham, P. C. Fingerprinting cell lines: use of human hypervariable DNA probes to characterize mammalian cell cultures. Somat. Cell. Mol. Genet. 14:519–525; 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Uphoff, C. C.; Gignac, S. M.; Drexler, H. G. Mycoplasma detection in human leukemia cell lines. I. Comparison of different detection methods. J. Immunol. Methods 149:43–53; 1992.

    PubMed  CAS  Google Scholar 

  40. Uphoff, C. C.; Brauer, S.; Grunicke, D., et al. Sensitivity and specificity of five different mycoplasma detection assays. Leukemia 6:335–341; 1992.

    PubMed  CAS  Google Scholar 

  41. Worton, R. G.; Duff, C. Karyotyping. In: Jakoby, W. B.; Pastan, I., eds. Cell culture. Methods in enzymology, vol. LVIII. San Diego: Academic Press; 1979:322–345.

    Google Scholar 

  42. Wright, W. C.; Daniels, W. P.; Fogh, J. Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis. J. Natl. Cancer Inst. 66:239–248; 1981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steube, K.G., Grunicke, D. & Drexler, H.G. Isoenzyme analysis as a rapid method for the examination of the species identity of cell cultures. In Vitro Cell Dev Biol - Animal 31, 115–119 (1995). https://doi.org/10.1007/BF02633971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633971

Key words

Navigation