Skip to main content

Aptasensors for Cancerous Exosome Detection

  • Protocol
  • First Online:
Extracellular Vesicles in Diagnosis and Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2504))

Abstract

Cancerous exosomes that carry multiple biomarkers are attractive targets for the early diagnosis and therapy of cancer. As one of the powerful molecular recognition tools, aptamers with excellent binding affinity and specificity toward biomarkers have been exploited to construct various aptamer-based biosensors (aptasensors) for exosome detection. Here, we review recent advances in aptasensors for the detection of cancerous exosomes. We first discuss the importance and potential of cancerous exosomes in cancer diagnosis and then summarize some conventional aptasensors from the perspective of biomarker recognition and signal collection strategies. Finally, we comment on the outlook for aptasensor research and new directions for cancerous exosome detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leffall LD Jr (1974) Early diagnosis of colorectal cancer. CA Cancer J Clin 24:152–159

    Article  PubMed  Google Scholar 

  2. Ranjan R, Esimbekova EN, Kratasyuk VA (2017) Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron 87:918–930

    Article  CAS  PubMed  Google Scholar 

  3. Majumdar D, Peng XH, Shin DM (2010) The medicinal chemistry of theragnostics, multimodality imaging and applications of nanotechnology in cancer. Curr Top Med Chem 10:1211–1226

    Article  CAS  PubMed  Google Scholar 

  4. Novak D, Utikal J (2021) New biomarkers in cancers. Cancers 13:708

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nassar FJ, Nasr R, Talhouk R (2017) MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 172:34–49

    Article  CAS  PubMed  Google Scholar 

  6. Schirripa M, Lenz HJ (2016) Biomarker in colorectal cancer. Cancer J 22:156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saxena S, Sankhla B, Sundaragiri KS, Bhargava A (2017) A review of salivary biomarker: a tool for early oral cancer diagnosis. Adv Biomed Res 6:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kumar S, Mohan A, Guleria R (2006) Biomarkers in cancer screening, research and detection: present and future: a review. Biomarkers 11:385–405

    Article  CAS  PubMed  Google Scholar 

  9. Adhami M, Haghdoost AA, Sadeghi B, Malekpour Afshar R (2018) Candidate miRNAs in human breast cancer biomarkers: a systematic review. Breast Cancer 25:198–205

    Article  PubMed  Google Scholar 

  10. Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32:623–642

    Article  CAS  PubMed  Google Scholar 

  11. Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cell 8:307

    Article  CAS  Google Scholar 

  12. Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li ITS (2019) Challenges and opportunities in exosome research–perspectives from biology, engineering, and cancer therapy. APL Bioeng 3:011503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Soung YH, Ford S, Zhang V, Chung J (2017) Exosomes in cancer diagnostics. Cancers 9:8

    Article  PubMed Central  CAS  Google Scholar 

  14. Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D (2017) Role of exosomal proteins in cancer diagnosis. Mol Cancer 16:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhang L, Gu C, Wen J, Liu G, Liu H, Li L (2021) Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem 413:83–102

    Article  CAS  PubMed  Google Scholar 

  16. Shao B, Xiao Z (2020) Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors—a review. Anal Chim Acta 1114:74–84

    Article  CAS  PubMed  Google Scholar 

  17. Xu L, Shoaie N, Jahanpeyma F, Zhao J, Azimzadeh M, Al-Jamal KT (2020) Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a comprehensive overview. Biosens Bioelectron 161:112222

    Article  CAS  PubMed  Google Scholar 

  18. Lorencova L, Bertok T, Bertokova A, Gajdosova V, Hroncekova S, Vikartovska A, Kasak P, Tkac J (2020) Exosomes as a source of cancer biomarkers: advances in electrochemical biosensing of exosomes. ChemElectroChem 7:1956–1973

    Article  CAS  Google Scholar 

  19. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  20. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  21. Qu H, Csordas AT, Wang J, Oh SS, Eisenstein MS, Soh HT (2016) Rapid and label-free strategy to isolate aptamers for metal ions. ACS Nano 10:7558–7565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nozari A, Berezovski MV (2017) Aptamers for CD antigens: from cell profiling to activity modulation. Mol Ther Nucleic Acids 6:29–44

    Article  CAS  PubMed  Google Scholar 

  23. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pang X, Cui C, Wan S, Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W (2018) Bioapplications of cell-SELEX-generated aptamers in cancer diagnostics, therapeutics, theranostics and biomarker discovery: a comprehensive review. Cancers 10:47

    Article  PubMed Central  CAS  Google Scholar 

  25. Mercier MC, Dontenwill M, Choulier L (2017) Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers 9:69

    Article  PubMed Central  CAS  Google Scholar 

  26. Fafińska J, Czech A, Sitz T, Ignatova Z, Hahn U (2018) DNA aptamers for the malignant transformation marker CD24. Nucleic Acid Ther 28:326–334

    Article  PubMed  CAS  Google Scholar 

  27. Wang Q, Zou L, Yang X, Liu X, Nie W, Zheng Y, Cheng Q, Wang K (2019) Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron 135:129–136

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Liu J, Xiao X, Sun S, Zhang H, Zhang Y, Zhou W, Zhang B, Roy M, Liu H, Ye M, Wang Z, Liu-Smith F, Liu J (2019) A novel aptamer LL4A specifically targets vemurafenib-resistant melanoma through binding to the CD63 protein. Mol Ther Nucleic Acids 18:727–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Song Z, Mao J, Barrero RA, Wang P, Zhang F, Wang T (2020) Development of a CD63 aptamer for efficient cancer immunochemistry and immunoaffinity-based exosome isolation. Molecules 25:5585

    Article  CAS  PubMed Central  Google Scholar 

  30. Gao M-L, Yin B-C, Ye B-C (2019) Construction of a DNA-AuNP-based satellite network for exosome analysis. Analyst 144:5996–6003

    Article  CAS  PubMed  Google Scholar 

  31. Lai W-Y, Huang B-T, Wang J-W, Lin P-Y, Yang P-C (2016) A novel PD-L1-targeting antagonistic DNA aptamer with antitumor effects. Mol Ther Nucleic Acids 5:e397

    Article  CAS  PubMed  Google Scholar 

  32. Zavyalova E, Turashev A, Novoseltseva A, Legatova V, Antipova O, Savchenko E, Balk S, Golovin A, Pavlova G, Kopylov A (2020) Pyrene-modified DNA aptamers with high affinity to wild-type EGFR and EGFRvIII. Nucleic Acid Ther 30:175–187

    Article  CAS  PubMed  Google Scholar 

  33. Wang D-L, Song Y-L, Zhu Z, Li X-L, Zou Y, Yang H-T, Wang J-J, Yao P-S, Pan R-J, Yang CJ, Kang D-Z (2014) Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochem Biophys Res Commun 453:681–685

    Article  CAS  PubMed  Google Scholar 

  34. Mahlknecht G, Maron R, Mancini M, Schechter B, Sela M, Yarden Y (2013) Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth. Proc Natl Acad Sci U S A 110:8170–8175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu G, Zhang H, Jacobson O, Wang Z, Chen H, Yang X, Niu G, Chen X (2017) Combinatorial screening of DNA aptamers for molecular imaging of HER2 in cancer. Bioconjug Chem 28:1068–1075

    Article  CAS  PubMed  Google Scholar 

  36. Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W (2011) RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci 102:991–998

    Article  CAS  PubMed  Google Scholar 

  37. Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    CAS  PubMed  Google Scholar 

  38. Lee YJ, Han SR, Kim NY, Lee SH, Jeong JS, Lee SW (2012) An RNA aptamer that binds carcinoembryonic antigen inhibits hepatic metastasis of colon cancer cells in mice. Gastroenterology 143:155–65.e8

    Article  CAS  PubMed  Google Scholar 

  39. Nabavinia MS, Gholoobi A, Charbgoo F, Nabavinia M, Ramezani M, Abnous K (2017) Anti-MUC1 aptamer: a potential opportunity for cancer treatment. Med Res Rev 37:1518–1539

    Article  CAS  PubMed  Google Scholar 

  40. Dong L, Tan Q, Ye W, Liu D, Chen H, Hu H, Wen D, Liu Y, Cao Y, Kang J, Fan J, Guo W, Wu W (2015) Screening and identifying a novel ssDNA aptamer against alpha-fetoprotein using CE-SELEX. Sci Rep 5:15552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gobbo J, Marcion G, Cordonnier M, Dias AMM, Pernet N, Hammann A, Richaud S, Mjahed H, Isambert N, Clausse V, Rébé C, Bertaut A, Goussot V, Lirussi F, Ghiringhelli F, de Thonel A, Fumoleau P, Seigneuric R, Garrido C (2016) Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer Inst. 108

    Google Scholar 

  42. Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113:2842–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li B, Pan W, Liu C, Guo J, Shen J, Feng J, Luo T, Situ B, Zhang Y, An T, Xu C, Zheng W, Zheng L (2020) Homogenous magneto-fluorescent nanosensor for tumor-derived exosome isolation and analysis. ACS Sens 5:2052–2060

    Article  CAS  PubMed  Google Scholar 

  45. Zhao X, Luo C, Mei Q, Zhang H, Zhang W, Su D, Fu W, Luo Y (2020) Aptamer-cholesterol-mediated proximity ligation assay for accurate identification of exosomes. Anal Chem 92:5411–5418

    Article  CAS  PubMed  Google Scholar 

  46. Yang L, Yin X, An B, Li F (2021) Precise capture and direct quantification of tumor exosomes via a highly efficient dual-aptamer recognition-assisted ratiometric immobilization-free electrochemical strategy. Anal Chem 93:1709–1716

    Article  CAS  PubMed  Google Scholar 

  47. Dong H, Chen H, Jiang J, Zhang H, Cai C, Shen Q (2018) Highly sensitive electrochemical detection of tumor exosomes based on aptamer recognition-induced multi-DNA release and cyclic enzymatic amplification. Anal Chem 90:4507–4513

    Article  CAS  PubMed  Google Scholar 

  48. He F, Liu H, Guo X, Yin B-C, Ye B-C (2017) Direct exosome quantification via bivalent-cholesterol-labeled DNA anchor for signal amplification. Anal Chem 89:12968–12975

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y-M, Liu J-W, Adkins GB, Shen W, Trinh MP, Duan L-Y, Jiang J-H, Zhong W (2017) Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal Chem 89:12327–12333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang R, He L, Li S, Liu H, Jin L, Chen Z, Zhao Y, Li Z, Deng Y, He N (2020) A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification. Nanoscale 12:2445–2451

    Article  CAS  PubMed  Google Scholar 

  51. Huang L, Wang D-B, Singh N, Yang F, Gu N, Zhang X-E (2018) A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale 10:20289–20295

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Shi J, Liu W, Zhang K, Zhao H, Zhang H, Zhang Z (2018) A simple, specific and “on-off” type MUC1 fluorescence aptasensor based on exosomes for detection of breast cancer. Sens Actuators B Chem 276:552–559

    Article  CAS  Google Scholar 

  53. Shi L, Ba L, Xiong Y, Peng G (2019) A hybridization chain reaction based assay for fluorometric determination of exosomes using magnetic nanoparticles and both aptamers and antibody as recognition elements. Mikrochim Acta 186:796

    Article  CAS  PubMed  Google Scholar 

  54. Wang H, Chen H, Huang Z, Li T, Deng A, Kong J (2018) DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta 184:219–226

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Z, Tang C, Zhao L, Xu L, Zhou W, Dong Z, Yang Y, Xie Q, Fang X (2019) Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale 11:10106–10113

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y (2018) Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem 90:12737–12744

    Article  CAS  PubMed  Google Scholar 

  57. Jin D, Yang F, Zhang Y, Liu L, Zhou Y, Wang F, Zhang G-J (2018) ExoAPP: exosome-oriented, aptamer nanoprobe-enabled surface proteins profiling and detection. Anal Chem 90:14402–14411

    Article  CAS  PubMed  Google Scholar 

  58. Yin X, Hou T, Huang B, Yang L, Li F (2019) Aptamer recognition-trigged label-free homogeneous electrochemical strategy for an ultrasensitive cancer-derived exosome assay. Chem Commun (Camb) 55:13705–13708

    Article  CAS  Google Scholar 

  59. Bagheri Hashkavayi A, Cha BS, Lee ES, Kim S, Park KS (2020) Advances in exosome analysis methods with an emphasis on electrochemistry. Anal Chem 92:12733–12740

    Article  CAS  PubMed  Google Scholar 

  60. Zhou Q, Rahimian A, Son K, Shin D-S, Patel T, Revzin A (2016) Development of an aptasensor for electrochemical detection of exosomes. Methods 97:88–93

    Article  CAS  PubMed  Google Scholar 

  61. Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng IT, Shi M, Wu Y, Dong Y, Tan W (2017) Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 11:3943–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. An Y, Jin T, Zhu Y, Zhang F, He P (2019) An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry. Biosens Bioelectron 142:111503

    Article  CAS  PubMed  Google Scholar 

  63. Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng L, Liu Y, Liu Y, He N, Li Z (2019) A sensitive aptasensor based on a hemin/G-quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small 15:e1900735

    Article  PubMed  CAS  Google Scholar 

  64. Zhao L, Sun R, He P, Zhang X (2019) Ultrasensitive detection of exosomes by target-triggered three-dimensional DNA walking machine and exonuclease III-assisted electrochemical ratiometric biosensing. Anal Chem 91:14773–14779

    Article  CAS  PubMed  Google Scholar 

  65. Hassan EM, DeRosa MC (2020) Recent advances in cancer early detection and diagnosis: role of nucleic acid based aptasensors. TrAC Trends Anal Chem 124:115806

    Article  CAS  Google Scholar 

  66. Xia Y, Liu M, Wang L, Yan A, He W, Chen M, Lan J, Xu J, Guan L, Chen J (2017) A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron 92:8–15

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, Wang D, Yue S, Lu Y, Yang C, Fang J, Xu Z (2019) Sensitive multicolor visual detection of exosomes via dual signal amplification strategy of enzyme-catalyzed metallization of Au nanorods and hybridization chain reaction. ACS Sens 4:3210–3218

    Article  CAS  PubMed  Google Scholar 

  68. Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, Tan W (2017) Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed 56:11916–11920

    Article  CAS  Google Scholar 

  69. Liao G, Liu X, Yang X, Wang Q, Geng X, Zou L, Liu Y, Li S, Zheng Y, Wang K (2020) Surface plasmon resonance assay for exosomes based on aptamer recognition and polydopamine-functionalized gold nanoparticles for signal amplification. Mikrochim Acta 187:251

    Article  CAS  PubMed  Google Scholar 

  70. Zhang X, Liu C, Pei Y, Song W, Zhang S (2019) Preparation of a novel Raman probe and its application in the detection of circulating tumor cells and exosomes. ACS Appl Mater Interfaces 11:28671–28680

    Article  CAS  PubMed  Google Scholar 

  71. Qiao B, Guo Q, Jiang J, Qi Y, Zhang H, He B, Cai C, Shen J (2019) An electrochemiluminescent aptasensor for amplified detection of exosomes from breast tumor cells (MCF-7 cells) based on G-quadruplex/hemin DNAzymes. Analyst 144:3668–3675

    Article  CAS  PubMed  Google Scholar 

  72. Wang Z, Zong S, Wang Y, Li N, Li L, Lu J, Wang Z, Chen B, Cui Y (2018) Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 10:9053–9062

    Article  CAS  PubMed  Google Scholar 

  73. Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y (2020) In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem 92:5546–5553

    Article  CAS  PubMed  Google Scholar 

  74. Huang M, Yang J, Wang T, Song J, Xia J, Wu L, Wang W, Wu Q, Zhu Z, Song Y, Yang C (2020) Homogeneous, low-volume, efficient, and sensitive quantitation of circulating exosomal PD-L1 for cancer diagnosis and immunotherapy response prediction. Angew Chem Int Ed 59:4800–4805

    Article  CAS  Google Scholar 

  75. Li P, Yu X, Han W, Kong Y, Bao W, Zhang J, Zhang W, Gu Y (2019) Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis. ACS Sens 4:1433–1441

    Article  CAS  PubMed  Google Scholar 

  76. Liu C, Zhao J, Tian F, Cai L, Zhang W, Feng Q, Chang J, Wan F, Yang Y, Dai B, Cong Y, Ding B, Sun J, Tan W (2019) Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat Biomed Eng 3:183–193

    Article  CAS  PubMed  Google Scholar 

  77. Webber J, Stone TC, Katilius E, Smith BC, Gordon B, Mason MD, Tabi Z, Brewis IA, Clayton A (2014) Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan™) platform. Mol Cell Proteomics 13:1050–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, J., Xie, S., Qu, F., Tan, W. (2022). Aptasensors for Cancerous Exosome Detection. In: Federico, M., Ridolfi, B. (eds) Extracellular Vesicles in Diagnosis and Therapy. Methods in Molecular Biology, vol 2504. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2341-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2341-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2340-4

  • Online ISBN: 978-1-0716-2341-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics