Skip to main content
Log in

Surface plasmon resonance assay for exosomes based on aptamer recognition and polydopamine-functionalized gold nanoparticles for signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel surface plasmon resonance (SPR) strategy is introduced for the specific determination of exosomes based on aptamer recognition and polydopamine-functionalized gold nanoparticle (Au@PDA NP)–assisted signal amplification. Exosomes derived from hepatic carcinoma SMMC-7721 were selected as the model target. SMMC-7721 exosomes can be specifically captured by the aptamer ZY-sls that was complementary to the DNA tetrahedron probes (DTPs), and then the CD63 aptamer–linked Au@PDA NPs recognized SMMC-7721 exosomes for signal amplification. The DTPs were modified on a Au film for preventing Au deposition on the surface during the introduction of HAuCl4, and PDA coated on the AuNPs was used to reduce HAuCl4 in situ without any reductant assistance. It results in a further enhanced SPR signal. The assay can clearly distinguish SMMC-7721 exosomes from others (HepG2 exosomes, Bel-7404 exosomes, L02 exosomes, MCF-7 exosomes, and SW480 exosomes, respectively). SMMC-7721 exosomes are specifically determined as low as 5.6 × 105 particles mL−1. The method has successfully achieved specific determination of SMMC-7721 exosomes even in 50% of human serum without any pretreatment.

A novel surface plasmon resonance (SPR) strategy was introduced for the specific determination of exosomes based on aptamer recognition and polydopamine functionalized gold nanoparticles (Au@PDA NPs). The SPR signal was improved using the Au@PDA NPs assisted amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  Google Scholar 

  2. Yang BW, Chen Y, Shi JL (2018) Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater:31. https://doi.org/10.1002/adma.201802896

  3. Brown L, Wolf JM, Prados-Rosales R, Casadevall A (2015) Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 13:620–630

    Article  CAS  Google Scholar 

  4. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H (2018) New technologies for analysis of extracellular vesicles. Chem Rev 118:1917–1950

    Article  CAS  Google Scholar 

  5. Pick H, Alves AC, Vogel H (2018) Single-vesicle assays using liposomes and cell-derived vesicles: from modeling complex membrane processes to synthetic biology and biomedical applications. Chem Rev 118:8598–8654

    Article  CAS  Google Scholar 

  6. Boriachek K, Masud MK, Palma C, Phan HP, Yamauchi Y, Hossain MSA, Nguyen NT, Salomon C, Shiddiky MJA (2019) Avoiding pre-isolation step in exosome analysis: direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal Chem 91:3827–3834

    Article  CAS  Google Scholar 

  7. Boriachek K, Islam MN, Gopalan V, Lam AK, Nguyen NT, Shiddiky MJA (2017) Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst 142:2211–2220

    Article  CAS  Google Scholar 

  8. Chen Z, Cheng SB, Cao P, Qiu QF, Chen Y, Xie M, Xu Y, Huang WH (2018) Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosens Bioelectron 122:211–217

    Article  Google Scholar 

  9. Kang YT, Kim YJ, Bu J, Cho YH, Han SW, Moon BI (2017) High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. Nanoscale 9:13495–13505

    Article  CAS  Google Scholar 

  10. Lewis JM, Vyas AD, Qiu Y, Messer KS, White R, Heller MJ (2018) Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano 12:3311–3320

    Article  CAS  Google Scholar 

  11. Li T, Zhang R, Chen H, Huang Z, Wang XH, Deng A, Kong J (2018) An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer. Chem Sci 9:5372–5382

    Article  CAS  Google Scholar 

  12. Zong SF, Wang L, Chen C, Lu J, Zhu D, Zhang YZ, Wang ZY, Cui YP (2016) Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal Methods 8:5001–5008

    Article  CAS  Google Scholar 

  13. Liu C, Zeng X, An Z, Yang Y, Eisenbaum M, Gu X, Jornet JM, Dy GK, Reid ME, Gan Q, Wu Y (2018) Sensitive detection of exosomal proteins via a compact surface plasmon resonance biosensor for cancer diagnosis. ACS Sens 3:1471–1479

    Article  CAS  Google Scholar 

  14. Qiu GY, Thakur A, Xu C, Ng SP, Lee Y, Wu CML (2019) Detection of glioma-derived exosomes with the biotinylated antibody-functionalized titanium nitride plasmonic biosensor. Adv Funct Mater 29(9). https://doi.org/10.1002/adfm.201806761

  15. Liang K, Liu F, Fan J, Sun D, Liu C, Lyon CJ, Bernard DW, Li Y, Yokoi K, Katz MH, Koay EJ, Zhao Z, Hu Y (2017) Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Bio Eng 1(4):1–11. https://doi.org/10.1038/s41551-016-0021

    Article  CAS  Google Scholar 

  16. Picciolini S, Gualerzi A, Vanna R, Sguassero A, Gramatica F, Bedoni M, Masserini M, Morasso C (2018) Detection and characterization of different brain-derived subpopulations of plasma exosomes by surface plasmon resonance imaging. Anal Chem 90:8873–8880

    Article  CAS  Google Scholar 

  17. Wang YM, Liu JW, Adkins GB, Shen W, Trinh MP, Duan LY, Jiang JH, Zhong WW (2017) Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal Chem 89:12327–12333

    Article  CAS  Google Scholar 

  18. Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng I, Shi M, Wu Y, Dong Y, Tan W (2017) Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 11:3943–3949

    Article  CAS  Google Scholar 

  19. Huang L, Wang DB, Singh N, Yang F, Gu N, Zhang XE (2018) A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale 10:20289–20295

    Article  CAS  Google Scholar 

  20. Zhang HX, Wang ZH, Zhang QX, Wang F, Liu Y (2019) Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens Bioelectron 124-125:184–190

    Article  CAS  Google Scholar 

  21. Wang Q, Zou L, Yang X, Liu X, Nie W, Zheng Y, Cheng Q, Wang K (2019) Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron 135:129–136

    Article  CAS  Google Scholar 

  22. Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng L, Liu Y, Liu Y, He N, Li Z (2019) A sensitive aptasensor based on a hemin/G-quadruplex assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small 15. https://doi.org/10.1002/smll.201900735

  23. Tan Y, Guo Q, Xie Q, Wang K, Yuan B, Zhou Y, Liu J, Huang J, He X, Yang X, He C, Zhao X (2014) Single-walled carbon nanotubes (SWCNTs)-assisted cell-systematic evolution of ligands by exponential enrichment (cell-SELEX) for improving screening efficiency. Anal Chem 86:9466–9472

    Article  CAS  Google Scholar 

  24. Nie W, Wang Q, Zou L, Zheng Y, Liu X, Yang X, Wang K (2018) Low-fouling surface plasmon resonance sensor for highly sensitive detection of microRNA in a complex matrix based on the DNA tetrahedron. Anal Chem 90:12584–12591

    Article  CAS  Google Scholar 

  25. Ye DK, Zuo XL, Fan CH (2018) DNA nanotechnology-enabled interfacial engineering for biosensor development. Annu Rev Anal Chem 11:171–195

    Article  CAS  Google Scholar 

  26. Huang YL, Mo S, Gao ZF, Chen JR, Lei JL, Luo HQ, Li NB (2017) Amperometric biosensor for microRNA based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification. Microchim Acta 184:2597–2604

    Article  CAS  Google Scholar 

  27. Hu W, He G, Zhang H, Wu X, Li J, Zhao Z, Qiao Y, Lu Z, Liu Y, Li CM (2014) Polydopamine-functionalization of graphene oxide to enable dual signal amplification for sensitive surface plasmon resonance imaging detection of biomarker. Anal Chem 86:4488–4493

    Article  CAS  Google Scholar 

  28. Scarano S, Pascale E, Palladino P, Fratini E, Minunni M (2018) Determination of fermentable sugars in beer wort by gold nanoparticles@polydopamine: a layer-by-layer approach for localized surface plasmon resonance measurements at fixed wavelength. Talanta 183:24–32

    Article  CAS  Google Scholar 

  29. Choi CK, Li J, Wei K, Xu YJ, Ho LW, Zhu M, To KK, Choi CH, Bian L (2015) A gold@polydopamine core-shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells. J Am Chem Soc 137:7337–7346

    Article  CAS  Google Scholar 

  30. Zhang JJ, Mou L, Jiang XY (2018) Hydrogels incorporating Au@polydopamine nanoparticles: robust performance for optical sensing. Anal Chem 90:11423–11430

    Article  CAS  Google Scholar 

  31. Ye Q, Zhou F, Liu WM (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258

    Article  CAS  Google Scholar 

  32. Fang T, Lv HW, Lv GS, Li T, Wang CZ, Han Q, Yu LX, Su B, Guo LN, Huang SN, Cao D, Tang L, Tang SH, Wu MC, Yang W, Wang HY (2018) Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 9:191. https://doi.org/10.1038/s41467-017-02583-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out within the framework of the National Natural Science Foundation of China (21675047, 21375034, and 21735002) and the National Science Foundation for Distinguished Young Scholars of Hunan Province (2016JJ1008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wang or Kemin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 992 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, G., Liu, X., Yang, X. et al. Surface plasmon resonance assay for exosomes based on aptamer recognition and polydopamine-functionalized gold nanoparticles for signal amplification. Microchim Acta 187, 251 (2020). https://doi.org/10.1007/s00604-020-4183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4183-1

Keywords

Navigation