Skip to main content
Log in

Synthesis and aminolysis of polysaccharide carbonates

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Well soluble dextran-, cellulose-, starch-, and pullulan aryl carbonates were synthesized applying p-NO2-phenyl chloroformate, phenyl chloroformate, and phenyl fluoroformate. Aminolysis of the products obtained, using aliphatic amines or benzyl amines, yield novel soluble polysaccharide carbamates. The influence of the reaction conditions on the reaction efficiency depending on polysaccharide, reagent, and reaction parameters including temperature was studied. Thus a synthesis strategy was developed for the easy and efficient design of structures of polysaccharide-based materials. The products were characterized by means of NMR-, UV-Vis- and FTIR spectroscopy, elemental analysis, and size exclusion chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barker SA, Disney HM, Somers PJ (1972a) Reaction of dextran carbonate with amino-acids and polypeptides. Carbohydr Res 25:237–241

    Article  CAS  Google Scholar 

  • Barker SA, Kennedy JF, Gray CJ (1972b) Cellulose carbonates and methods for their preparation. US Patent 3705890A

  • Berlin P, Klemm D, Tiller J, Rieseler R (2000) A novel soluble aminocellulose derivative type: its transparent film-forming properties and its efficient coupling with enzyme proteins for biosensors. Macromol Chem Phys 201:2070–2082

    Article  CAS  Google Scholar 

  • Bruneel D, Schacht E (1993) Chemical modification of pullulan .2. chloroformate activation. Polymer 34:2633–2637

    Article  CAS  Google Scholar 

  • Buysch HJ, Klausener A, Szablikowski K, Balser K, Wilke M (1990a) Kohlensäureester von Polysacchariden und Verfahren zu ihrer Herstellung. DE Patent 3836600A1

  • Buysch HJ, Klausener A, Szablikowski K, K Balser MW (1990b) Neue Polysaccharide, Verfahren zu ihrer Herstellung und ihre Verwendung. DE Patent 3836599A1

  • Buysch HJ, Klausener A, Szablikowski K, Balser K, Wilke M (1995) Polysaccharides, process for their preparation and their use. US Patent 5463034

  • Constantin M, Fundueanu G, Cortesi R, Esposito E, Nastruzzi C (2003) Aminated polysaccharide microspheres as DNA delivery systems. Drug Deliv 10:139–149

    Article  CAS  Google Scholar 

  • Cuomo J, Olofson RA (1979) Efficient and convenient synthesis of fluoroformates and carbamoyl fluorides. J Org Chem 44:1016–1017

    Article  CAS  Google Scholar 

  • Dang VA, Olofson RA (1990) Advantages of fluoroformates as carboalkoxylating reagents for polar reactants. J Org Chem 55:1851–1854

    Article  Google Scholar 

  • De Smedt SC, Demeester J, Hennink WE (2000) Cationic polymer based gene delivery systems. Pharm Res 17:113–126

    Article  CAS  Google Scholar 

  • Doane WM, Shasha BS, Stout EI, Russell CR, Rist CE (1968) Reaction of starch with carbohydrate trans-carbonates. Carbohydr Res 8:266–274

    Article  CAS  Google Scholar 

  • Ehrenfreund-Kleinman T, Golenser J, Domb AJ (2004) Conjugation of amino-containing drugs to polysaccharides by tosylation: amphotericin b-arabinogalactan conjugates. Biomaterials 25:3049–3057

    Article  CAS  Google Scholar 

  • Elschner T, Wondraczek H, Heinze T (2012) Syntheses and detailed structure characterization of dextran carbonates. Carbohydr Polym. doi:https://doi.org/10.1016/j.carbpol.2012.01.091

    Article  CAS  Google Scholar 

  • Gomez JAC, Erler UW, Klemm DO (1996) 4-Methoxy substituted trityl groups in 6-O protection of cellulose: homogeneous synthesis, characterization, detritylation. Macromol Chem Phys 197:953–964

    Article  Google Scholar 

  • Hayashi S (2002) Synthesis and properties of cellulose carbonate derivatives. Kobunshi Ronbunshu 59:1–7

    Article  CAS  Google Scholar 

  • Haynes M, Garrett RA, Gratzer WB (1970) Structure of nucleic acid-poly base complexes. Biochemistry 9:4410–4416

    Article  CAS  Google Scholar 

  • Heinze T, Röttig K, Nehls I (1994) Synthesis of 2,3-O-carboxymethylcellulose. Macromol Rapid Commun 15:311–317

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Heublein B, Hornig S (2006a) Functional polymers based on dextran. Adv Polym Sci 205:199–291

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Koschella A (2006b) Esterification of polysaccharides, chap 5. Springer, Heidelberg, pp 57–62

  • Heinze T, Nikolajski M, Daus S, Besong TMD, Michaelis N, Berlin P, Morris GA, Rowe AJ, Harding SE (2011) Protein-like oligomerization of carbohydrates. Angew Chem Int Ed 50:8602–8604

    Article  CAS  Google Scholar 

  • Hosseinkhani H, Azzam T, Tabata Y, Domb AJ (2004) Dextran-spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther 11:194–203

    Article  CAS  Google Scholar 

  • Ishak MF, Painter T (1971) Formation of inter-residue hemiacetals during oxidation of polysaccharides by periodate ion. Acta Chem Scand 25:3875–3877

    Article  CAS  Google Scholar 

  • Kevill DN, Weitl FL (1968) Kinetics and mechanism of decomposition of 1-adamantyl chloroformate. J Am Chem Soc 90:6416–6420

    Article  CAS  Google Scholar 

  • Kohn J, Wilchek M (1981) Procedures for the analysis of cyanogen bromide-activated sepharose or sephadex by quantitative-determination of cyanate esters and imidocarbonates. Anal Biochem 115:375–382

    Article  CAS  Google Scholar 

  • Krapcho AP, Kuell CS (1990) Mono-protected diamines—N-tert-butoxycarbonyl-alpha, omega-alkanediamines from alpha, omega-alkanediamines. Synth Commun 20:2559–2564

    Article  CAS  Google Scholar 

  • Larsen C (1989) Dextran prodrugs—structure and stability in relation to therapeutic activity. Adv Drug Deliv Rev 3:103–154

    Article  Google Scholar 

  • Mehvar R (2000) Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J Controlled Release 69:1–25

    Article  CAS  Google Scholar 

  • Meiland M, Liebert T, Heinze T (2011) Tailoring the degree of polymerization of low molecular weight cellulose. Macromol Mater Eng 296:802–809

    Article  CAS  Google Scholar 

  • Nikolajski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino functionalized cellulose nanoparticles: preparation, characterization and interactions with living cells. Macromol Biosci. doi:https://doi.org/10.1002/mabi.201200040

    Article  CAS  Google Scholar 

  • Pourjavadi A, Seidi F, Afjeh SS, Nikoseresht N, Salimi H, Nemati N (2011) Synthesis of soluble N-functionalized polysaccharide derivatives using phenyl carbonate precursor and their application as catalysts. Starch 63:780–791

    Article  CAS  Google Scholar 

  • Ramirez JC, Sanchezchaves M, Arranz F (1995) Dextran functionalized by 4-nitrophenyl carbonate groups—aminolysis reactions. Angew Makromol Chem 225:123–130

    Article  CAS  Google Scholar 

  • Szablikowski K, Buysch HJ, Klausener A (1993) Verfahren zur Herstellung von Polysaccharidcarbonaten. DE Patent 4130807A1

  • Takai T, Ohmori H (1990) DNA transfection of mouse lymphoid-cells by the combination of DEAE-dextran-mediated DNA uptake and osmotic shock procedure. Biochim Biophys Acta 1048:105–109

    Article  CAS  Google Scholar 

  • Tseng WC, Jong CM (2003) Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules 4:1277–1284

    Article  CAS  Google Scholar 

  • Vandoorne F, Vercauteren R, Permentier D, Schacht E (1985) Reinvestigation of the 4-nitrophenyl chloroformate activation of dextran—evidence for the formation of different types of carbonate moieties. Macromol Chem Phys 186:2455–2460

    Article  Google Scholar 

  • Vandoorne F, Bruneel D, Vercauteren R, Schacht E (1991) New approach to dextran derivatives containing primary amino functions. Macromol Chem Phys 192:673–677

    Article  CAS  Google Scholar 

  • Vansteenkiste S, Demarre A, Schacht E (1992) Synthesis of glycosylated dextrans. J Bioact Compat Polym 7:4–14

    Article  CAS  Google Scholar 

  • Whistler RL, Green JW, BeMiller JN, Wolfrom ML (1963) Methods of carbohydrate chemistry, chap 57. Academic Press, New York/London, p 327

  • Wondraczek H, Elschner T, Heinze T (2011) Synthesis of highly functionalized dextran alkyl carbonates showing nanosphere formation. Carbohydr Polym 83:1112–1118

    Article  CAS  Google Scholar 

  • Xu FJ, Ping Y, Ma J, Tang GP, Yang WT, Li J, Kang ET, Neoh KG (2009) Comb-shaped copolymers composed of hydroxypropyl cellulose backbones and cationic poly((2-dimethyl amino)ethyl methacrylate) side chains for gene delivery rid b-5308-2008. Bioconjug Chem 20:1449–1458

    Article  CAS  Google Scholar 

  • Zuckermann RN, Martin EJ, Spellmeyer DC, Stauber GB, Shoemaker KR, Kerr JM, Figliozzi GM, Goff DA, Siani MA, Simon RJ, Banville SC, Brown EG, Wang L, Richter LS, Moos WH (1994) Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. J Med Chem 37:2678–2685

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the German Science Foundation (DFG, project HE 2054/11-1) and the Thuringian Ministry for Education, Science and Culture (grant #B514-09051, NanoConSens) is gratefully acknowledged. The authors thank Robert Hampe, Annett Pfeifer, and Melanie Nikolajski for their contribution to the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze.

Additional information

T. Heinze et al.: Member of the European Polysaccharide Network of Excellence (EPNOE), http://www.epnoe.eu

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (121 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elschner, T., Ganske, K. & Heinze, T. Synthesis and aminolysis of polysaccharide carbonates. Cellulose 20, 339–353 (2013). https://doi.org/10.1007/s10570-012-9819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9819-9

Keywords

Navigation