Skip to main content

Screening Strategies for Biosurfactant Discovery

  • Chapter
  • First Online:
Biosurfactants for the Biobased Economy

Abstract

The isolation and screening of bacteria and fungi for the production of surface-active compounds has been the basis for the majority of the biosurfactants discovered to date. Hence, a wide variety of well-established and relatively simple methods are available for screening, mostly focused on the detection of surface or interfacial activity of the culture supernatant. However, the success of any biodiscovery effort, specifically aiming to access novelty, relies directly on the characteristics being screened for and the uniqueness of the microorganisms being screened. Therefore, given that rather few novel biosurfactant structures have been discovered during the last decade, advanced strategies are now needed to widen access to novel chemistries and properties. In addition, more modern Omics technologies should be considered to the traditional culture-based approaches for biosurfactant discovery. This chapter summarizes the screening methods and strategies typically used for the discovery of biosurfactants and highlights some of the Omics-based approaches that have resulted in the discovery of unique biosurfactants. These studies illustrate the potentially enormous diversity that has yet to be unlocked and how we can begin to tap into these biological resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schultz J, Rosado AS (2020) Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24(2):189–206

    Article  PubMed  CAS  Google Scholar 

  2. Mahjoubi M, Jaouani A, Guesmi A et al (2013) Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential. N Biotechnol 30:723–733

    Article  PubMed  CAS  Google Scholar 

  3. Cai Q, Zhang B, Chen B et al (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar Pollut Bull 86:402–410

    Article  PubMed  CAS  Google Scholar 

  4. Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeter Biodegr 120:71–83

    Article  CAS  Google Scholar 

  5. Kubicki S, Bollinger A, Katzke N et al (2019) Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar Drugs 17:408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kurtböke I (2010) Biodiscovery from microbial resources: actinomycetes leading the way. Microbiol Aust 31(2):53

    Article  Google Scholar 

  7. Kurniati TH, Rahayu S, Sukmawati D et al (2019) Screening of biosurfactant producing bacteria from hydrocarbon contaminated soil. J Phys Conf Ser 1402(5)

    Google Scholar 

  8. Challis G (2008) Mining microbial genomes for new natural products & biosynthetic pathways. Microbiology 154(6):1555–1569

    Article  PubMed  CAS  Google Scholar 

  9. Sourav D, Susanta M, Aniruddha G et al (2015) A review on natural surfactants. RSC Adv 5:65757–65767

    Article  Google Scholar 

  10. Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. In: Sen R (ed) Biosurfactants. Springer, New York, pp p1–p13

    Google Scholar 

  11. Domingues PM, Oliveira V, Serafim LS et al (2020) Biosurfactant production in sub-oxic conditions detected in hydrocarbon-degrading isolates from marine and estuarine sediments. Int J Environ Res Public Health 17(5):1746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Phulpoto IA, Yu Z, Hu B et al (2020) Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb Cell Fact 19:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rani M, Weadge JT, Jabaji S (2020) Isolation and characterization of biosurfactant-producing bacteria from oil well batteries with antimicrobial activities against food-borne and plant pathogens. Front Microbiol 11:64

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chittepu O (2019) Isolation and characterization of biosurfactant producing bacteria from groundnut oil cake dumping site for the control of foodborne pathogens. GOST 2(1):15–20

    Google Scholar 

  15. Sohail R, Jamil N (2020) Isolation of biosurfactant producing bacteria from Potwar oil fields: Effect of non-fossil fuel based carbon sources. Green Process Synth 9(1):77–86

    Article  Google Scholar 

  16. Kubicki S, Bator I, Jankowski S et al (2020) A straightforward assay for screening and quantification of biosurfactants in microbial culture supernatants. Front Bioeng Biotechnol 8:958

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fenibo EO, Douglas SI, Stanley HO (2019) A review on microbial surfactants: production, classification, properties and characterization. J Adv Microbiol 18(3):1–22

    Article  Google Scholar 

  18. Yang H, Yu H, Shen Z (2015) A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production. J Ind Microbiol Biotechnol 42:1139–1147

    Article  PubMed  CAS  Google Scholar 

  19. Joy S, Rahman P, Sharma S (2017) Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chem Eng J 317:232–241

    Article  CAS  Google Scholar 

  20. Nayarisseri A, Singh P, Singh S (2018) Screening, isolation and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bioinformation 14(06):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sharma D, Ansari M, Al-Ghamdi A, Adgaba N, Khan K, Pruthi V, Al-Waili N (2015) Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization. Environ Sci Pollut Res 22(22):17636–17643

    Article  CAS  Google Scholar 

  22. Nishanthi R, Kumaran S, Palani P, Chellaram C, Prem Anand T, Kannan V (2010) Screening of biosurfactants from hydrocarbon degrading bacteria. J Ecobiotechnol 2(5):47–53

    Google Scholar 

  23. Sato S, Fukuoka T, Saika A, Koshiyama T, Morita T (2019) A new screening approach for glycolipid-type biosurfactant producers using MALDI-TOF / MS. J Oleo Sci 1294(12):1287–1294

    Article  Google Scholar 

  24. Sun W, Cao W, Jiang M et al (2018) Isolation and characterization of biosurfactant-producing and diesel oil degrading Pseudomonas sp. CQ2 from changing oil field. China RSC Adv 69(8):39710–39720

    Article  Google Scholar 

  25. Varadevenkatesan T, Murty RV (2013) Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. Int Sch Res Notices 2013:621519

    Google Scholar 

  26. Londhe M, Khambe D, Govindvar D (2012) Isolation, peliminary screening and process optimization for production of surface active agent from Chlorella pyrenoidosa by non-disruptive method. Int J Sci Res 3(6):399–402

    Google Scholar 

  27. Rodrigues LR, Teixeira JA, Van der Mei HC et al (2006) Physicochemical and functional characterisation of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B Biointerfaces 49(1):79–86

    Article  PubMed  CAS  Google Scholar 

  28. Satpute S, Mone N, Das P et al (2019) Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiol 19:39

    Article  PubMed  PubMed Central  Google Scholar 

  29. Twigg MS, Baccile N, Banat IM et al (2020) Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. J Microbial Biotechnol:1751–7915

    Google Scholar 

  30. Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Pet Environ Biotechnol S1:001

    Google Scholar 

  31. Williams W, Trindade M (2017) Metagenomics for the discovery of novel biosurfactants. In: Charles T, Liles M, Sessitsch A (eds) Functional metagenomics: tools and applications. Springer, Cham, pp 95–117

    Chapter  Google Scholar 

  32. Jain DK, Collins-Thempson DL, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13(4):271–279

    Article  Google Scholar 

  33. Saruni NH, Razak SA, Habib S et al (2019) Comparative screening methods for the detection of biosurfactant-producing capability of antarctic hydrocarbon-degrading Psuedomonas Sp. J Environ Microbiol Toxicol 7(1):44–47

    Article  Google Scholar 

  34. Youssef NH, Dencane KE, Nagle DP et al (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    Article  PubMed  CAS  Google Scholar 

  35. Burch AY, Shimada BK, Browne PJ et al (2010) Novel high-throughput detection method to assess bacterial surfactant production. Appl Environ Microbiol 76(16):5363–5372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mnif I, Ghribi D (2015) Microbial derived surface-active compounds: properties and screening concept. World J Microbiol Biotechnol 31:1001–1020

    Article  PubMed  CAS  Google Scholar 

  37. Balan SS, Kumar CG, Jayalakshmi S (2017) Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from gulf of Mannar: purification, characterization and it is biological evaluation. Microbiol Res 194:1–9

    Article  PubMed  CAS  Google Scholar 

  38. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488(3):211–218

    Article  PubMed  CAS  Google Scholar 

  39. Cipinyete V, Grigiskis S, Sapokaite D et al (2011) Production of biosurfactants by Arthrobacter sp. N3, a hydrocarbon degrading bacterium. In: Noviks G, Ansone V (eds) Proceedings of the 8th international scientific and practical conference, Latvia, June 2011, vol 1. RA Izdevniecība, pp 68–75

    Google Scholar 

  40. Williams W, Kunorozva L, Klaiber I et al (2019) Novel metagenome-derived ornithine lipids identified by functional screening for biosurfactants. Appl Microbiol Biotechnol 103(11):4429–4441

    Article  PubMed  CAS  Google Scholar 

  41. Cottingham M, Bain C, Vaux D (2003) Rapid method for measurement of surface tension in multiwell plates. Lab Invest 84:523–529

    Article  Google Scholar 

  42. Kavuthodi B, Thomas SK, Sebastian D (2015) Co-production of pectinase and biosurfactants by the newly isolates strain Bacillus subtilis BKDS1. Br Microbiol Res J 10(2):1–2

    Article  Google Scholar 

  43. Maczek J, Junne S, Götz P (2007) Examining biosurfactant producing bacteria – an example for an automated search for natural compounds. Appl Note CyBio AG

    Google Scholar 

  44. Person A, Molin G (1987) Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates. Appl Microbiol Biotechnol 26(5):439–442

    Google Scholar 

  45. Roosloot R, Schoen P (2011) A colorimetric assay for determination of residual detergent levels in reconstituted membrane protein preparations. Anal Biochem 413:72–74

    Article  PubMed  CAS  Google Scholar 

  46. Vulliez-Le Normand B, Eiselé JL (1993) Determination of detergent critical micellar concentration by solubilization of a colored dye. Anal Biochem 208:241–243

    Article  PubMed  CAS  Google Scholar 

  47. Cooper DG, Goldenberg BG (1987) Surface active agents from two Bacillus species. Appl Environ Microbiol 53(2):224–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Reddy SR, Fogler HS (1981) Emulsion stability: determination from turbidity. J Colloid Interface Sci 79(1):101–104

    Article  CAS  Google Scholar 

  49. Bernheimer AW, Avigad LS (1970) Nature and properties of a cytolytic agent produced by Bacillus subtilis. J Gen Microbiol 61(3):361–369

    Article  PubMed  CAS  Google Scholar 

  50. Carrillo PG, Mardaraz C, Pitta-Alvarez SJ et al (1996) Isolation and selection of biosurfactant-producing bacteria. World J Microbiol Biotechnol 12:82–84

    Article  PubMed  CAS  Google Scholar 

  51. Johnson M, Boese-Marrazzo D (1980) Production and properties of het-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 29(3):1028–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Shimuta K, Ohnishi M, Iyoda S et al (2009) The hemolytic and cytolytic activities of Serratia marcescens phospholipase A (PhlA) depend on lysophospholipid production by PhlA. BMC Microbiol 9:261

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pinzon NM, Ju L-K (2009) Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide. Biotechnol Lett 31:1583–1588

    Article  PubMed  CAS  Google Scholar 

  54. Heuson E, Etchegaray A, Filipe SL et al (2019) Screening of lipopeptide-producing strains of Bacillus sp. using a new automated and sensitive fluorescence detection method. Biotechnol J 14:1–8

    Article  Google Scholar 

  55. Satpute SK, Bhawsar BD, Dhakephalkar PK et al (2008) Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Mar Sci 37(3):243–250

    CAS  Google Scholar 

  56. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons—a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9(1):29–33

    Article  CAS  Google Scholar 

  57. Rosenberg M (1981) Bacterial adherence to polystyrene – a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42(2):375–377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Pruthi V, Cameotra SS (1997) Rapid identification of biosurfactant producing bacterial strains using a cell surface hydrophobicity technique. Biotechnol Tech 11(9):671–674

    Article  CAS  Google Scholar 

  59. Lindahl M, Faris A, Wadstrom T et al (1981) A new test based on salting out to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 677:471–476

    Article  PubMed  CAS  Google Scholar 

  60. Willumsen PA, Karlson U (1997) Screening of bacteria isolated from PAH-contaminated soils for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423

    Article  Google Scholar 

  61. Ghosal D, Ghosh S, Dutta TK et al (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7(386):1369–1396

    PubMed  PubMed Central  Google Scholar 

  62. Safitri R, Handayani S, Surono W et al (2019) Biodegradation of phenol, anthracene and acenaphthene singly and consortium culture of indigenous microorganism isolates from underground coal gasification area. In: IOP conference series: earth and environmental science. Conference on sustainability science, Indonesia, October 2018, vol 306, p 012026

    Google Scholar 

  63. Fanaei M, Emtiazi G (2018) Microbial assisted (Bacillus mojavensis) production of biosurfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MS analysis. J Mol Liq 268:707–714

    Article  CAS  Google Scholar 

  64. Fukuoka T, Morita T, Konishi M et al (2007) Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl Microbiol Biotechnol 76:801–810

    Article  PubMed  CAS  Google Scholar 

  65. Fukuoka T, Morita T, Konishi M et al (2007) Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnol Lett 29:1111–1118

    Article  PubMed  CAS  Google Scholar 

  66. Imura T, Kawamura D, Morita T et al (2013) Production of sophorolipids from non-edible jatropha oil by Stamerella bombicola NBRC 10243 and evaluation of their interfacial properties. J Oleo Sci 62:857–864

    Article  PubMed  CAS  Google Scholar 

  67. Morita T, Fukuoka T, Imura T et al (2013) Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis. FEMS Yeast Res 13:44–49

    Article  PubMed  CAS  Google Scholar 

  68. Satpute SK, Banpurkar AG, Dhakephalkar PK et al (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 30(2):127–144

    Article  PubMed  CAS  Google Scholar 

  69. Satpute SK, Bhuyan SS, Pardesi KR et al (2010) Molecular genetics of biosurfactant synthesis in microorganisms. In: Sen R (ed) Biosurfactants. Advances in experimental medicine and biology. Springer, New York, pp 14–41

    Google Scholar 

  70. Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Annu Rep Prog Chem Sect C Phys Chem 99:3–48

    Article  CAS  Google Scholar 

  71. Pereira JFB, Gudiῆa EJ, Costa R et al (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268

    Article  CAS  Google Scholar 

  72. Tuleva BK, Ivanov GR, Christova NE (2002) Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch 57:356–360

    Article  CAS  Google Scholar 

  73. Dilmohamud B, Seeneevassen J, Rughooputh S et al (2005) Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer. Euro J Physics 26(6):1079–1084

    Article  CAS  Google Scholar 

  74. Van der Vegt W, Vander Mei HC, Noordmans J et al (1991) Assessment of bacterial biosurfactant production through axisymmetric drop shape analysis by profile. Appl Microbiol Biotechnol 35:766–770

    Article  Google Scholar 

  75. Berry JD, Neeson MJ, Dagastine RR et al (2015) Measurement of surface and interfacial tension using pendant drop tensiometry. J Colloid Interface Sci 454:226–237

    Article  PubMed  CAS  Google Scholar 

  76. Tadros T (2005) Adsorption of surfactants at the air/liquid and liquid/liquid interfaces. In: Applied surfactants: principles and applications. Wiley VCH, Weinheim, pp 81–82

    Chapter  Google Scholar 

  77. Mac Aogáin M, Chaturvedi V, Chotirmall SH (2019) MycopathologiaGENOMES: the new ‘Home’ for the publication of fungal genomes. Mycopathologia 184:551–554

    Article  PubMed  Google Scholar 

  78. Hughes RA, Ellington AD (2017) Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect Biol 9(1):a023812

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kurtböke I (2017) Revisiting biodiscovery from microbial sources in the light of molecular advances. Microbiol Aust 38(2):58

    Article  Google Scholar 

  80. Romano S, Jackson S, Patry S et al (2018) Extending the “One Strain Many Compounds” (OSMAC) principle to marine microorganisms. Mar Drugs 16(244):1–29

    Google Scholar 

  81. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  82. Tatusov RL, Galperin MY, Natale DA et al (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Jackson S, Borchert E, O’Gara F, Dobson A (2015) Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr Opin Biotechnol 33:176–182

    Article  PubMed  CAS  Google Scholar 

  85. Blin K, Shaw S, Steinke K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:81–87

    Article  Google Scholar 

  86. Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523

    Article  PubMed  CAS  Google Scholar 

  87. Wang X, Zhou H, Chen H et al (2018) Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc Natl Acad Sci U S A 115(18)

    Google Scholar 

  88. Coutinho PM, Deleury E, Davies GJ et al (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  PubMed  CAS  Google Scholar 

  89. Rabausch U, Juergensen J, Ilmberger N et al (2013) Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl Environ Microbiol 79:4551–4563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Niehs SP, Scherlach K, Hertweck C (2018) Biomolecular chemistry genomics-driven discovery of a linear lipopeptide promoting host colonization by endofungal bacteria. Org Biomol Chem 16:8345–8352

    Article  PubMed  Google Scholar 

  91. Gerc AJ, Stanley-Wall NR, Coulthurst SJ (2014) Role of the phosphopantetheinyltransferase enzyme PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10. Microbiology 160:1609–1617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Retamal-Morales G, Heine T, Tischler JS et al (2018) Draft genome sequence of Rhodococcus erythropolis B7g, a biosurfactant producing actinobacterium. J Biotechnol 20(280):38–41

    Article  Google Scholar 

  93. Waghmode S, Suryavanshi M, Dama L et al (2019) Genomic insights of halophilic Planococcus maritimus SAMP MCC 3013 and detail investigation of its biosurfactant production. Front Microbiol 10:235

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tuffin M, Anderson D, Heath C et al (2009) Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnol J 4(12):1671–1683

    Article  PubMed  CAS  Google Scholar 

  95. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhang X, Hindra EMA (2019) Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr Opin Microbiol 51:9–15

    Article  PubMed  CAS  Google Scholar 

  97. Nora LC, Westmann CA, Martins-Santana L et al (2019) The art of vector engineering: towards the construction of next-generation genetic tools. J Microbial Biotechnol 12:125–147

    Article  CAS  Google Scholar 

  98. Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20:616–622

    Article  PubMed  CAS  Google Scholar 

  99. Lin Z, Nielsen J, Liu Z (2020) Bioprospecting through cloning of whole natural product biosynthetic gene clusters. Front Bioeng Biotechnol 8:526

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sotirova AV, Spasova DI, Galabova DN et al (2008) Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr Microbiol 56:639–644

    Article  PubMed  CAS  Google Scholar 

  101. Beld J, Sonnenschein EC, Vickery CR et al (2014) The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31:61–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Thies S, Santiago-Schübel B, Kovačić F et al (2014) Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J Biotechnol 181:27–30

    Article  PubMed  CAS  Google Scholar 

  103. Tiso T, Thies S, Müller M et al (2017) Rhamnolipids: production, performance, and application. In: Lee SY (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer, Cham, pp 587–622

    Chapter  Google Scholar 

  104. Loeschcke A, Thies S (2020) Engineering of natural product biosynthesis in Pseudomonas putida. Curr Opin Biotechnol 65:213–224

    Article  PubMed  CAS  Google Scholar 

  105. Wittgens A, Rosenau F (2018) On the road towards tailor-made rhamnolipids: current state and perspectives. Appl Microbiol Biotechnol 102:8175–8185

    Article  PubMed  CAS  Google Scholar 

  106. Roelants SLKW, Saerens KMJ, Derycke T et al (2013) Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng 110:2494–2503

    Article  PubMed  CAS  Google Scholar 

  107. Bahia FM, De Almeida GC, De Andrade LP et al (2018) Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae. Sci Rep 8:1–10

    Article  CAS  Google Scholar 

  108. Wang Z, Feng S, Huang Y et al (2010) Expression and characterization of a Grifola frondosa hydrophobin in Pichia pastoris. Protein Expr Purif 72:19–25

    Article  PubMed  CAS  Google Scholar 

  109. Streit WR, Schmitz RA (2004) Metagenomics- the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  PubMed  CAS  Google Scholar 

  110. Kennedy J, O’Leary ND, Kiran GS et al (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111:787–799

    Article  PubMed  CAS  Google Scholar 

  111. Brady SF, Chao CJ, Clardy J (2004) Long-chain N-acyltyrosine synthases from environmental DNA. Appl Environ Microbiol 70:6865–6870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Thies S, Rausch SC, Kovacic F et al (2016) Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 6:27035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lee C-M, Kim S-Y, Yoon S-H et al (2019) Characterization of a novel antibacterial N-acyl amino acid synthase from soil metagenome. J Biotechnol 294:19–25

    Article  PubMed  CAS  Google Scholar 

  114. Araújo SC, Silva-Portela RCB, de Lima DC et al (2020) MBSP1: a biosurfactant protein derived from a metagenomic library with activity in oil degradation. Sci Rep 10:1–13

    Article  Google Scholar 

  115. Cox PW, Hooley P (2009) Hydrophobins: new prospects for biotechnology. Fungal Biol Rev 23:40–47

    Article  Google Scholar 

  116. Pitocchi R, Cicatiello P, Birolo L et al (2020) Cerato-Platanins from marine fungi as effective protein biosurfactants and bioemulsifiers. Int J Mol Sci 21:2913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Jeong H, Qian X, Yoon B-J (2016) Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model. BMC Bioinformatics 17:395

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li H, Tanikawa T, Sato Y et al (2005) Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 49:303–310

    Article  PubMed  CAS  Google Scholar 

  119. Trindade M, van Zyl L, Navarro-Fernández J, Abd Elrazak A (2015) Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 6:1–14

    Article  Google Scholar 

  120. Ayling M, Clark MD, Leggett RM (2020) New approaches for metagenome assembly with short reads. Brief Bioinform 21:584–594

    Article  PubMed  CAS  Google Scholar 

  121. Meleshko D, Mohimani H, Tracanna V et al (2019) BiosyntheticSPAdes: reconstructing biosynthetic gene clusters from assembly graphs. Genome Res 29:1352–1362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Stevenson LJ, Owen JG, Ackerley DF (2019) Metagenome driven discovery of nonribosomal peptides. ACS Chem Biol 14:9b00618

    Article  Google Scholar 

  123. Hover BM, Kim S-H, Katz M et al (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant gram-positive pathogens. Nat Microbiol 3:415–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Wu C, Shang Z, Lemetre C et al (2019) Cadasides, calcium-dependent acidic lipopeptides from the soil metagenome that are active against multidrug-zesistant bacteria. J Am Chem Soc 141:3910–3919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Chu J, Vila-Farres X, Inoyama D et al (2016) Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol 12:1004–1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Craig JW, Chang F-Y, Kim JH et al (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76:1633–1641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wang G, Zhao Z, Ke J et al (2019) CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat Microbiol 4:2498–2510

    Article  PubMed  Google Scholar 

  128. Marmeisse R, Kellner H, Fraissinet-Tachet L et al (2017) Discovering protein-coding genes from the environment: time for the eukaryotes? Trends Biotechnol 35:824–835

    Article  PubMed  CAS  Google Scholar 

  129. Hewald S, Linne U, Scherer M et al (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Teichmann B, Linne U, Hewald S et al (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66:525–533

    Article  PubMed  CAS  Google Scholar 

  131. Van Bogaert IN, Holvoet K, Roelants SL et al (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88:501–509

    Article  PubMed  Google Scholar 

  132. Staley JT, Konopka A (1985) Measurements of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  PubMed  CAS  Google Scholar 

  133. Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria- an essential prerequisite for biodiscovery. J Microbial Biotechnol 3:564–575

    Article  CAS  Google Scholar 

  134. Wang S, Yu S, Wei Q et al (2014) Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 80(21):6724–6732

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yang A, Tang WS, Si T et al (2017) Influence of physical effects on the swarming motility of Pseudomonas aeruginosa. Biophys J 112(7):1462–1471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Thrash JC (2019) Culturing the uncultured: risk versus reward. mSystems 4:e00130-19

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lagier J, Khelai S, Alou MT et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203

    Article  PubMed  CAS  Google Scholar 

  138. Lewis WH, Ettema TG (2019) Culturing the uncultured. Nat Biotechnol 37:1278–1279

    Article  PubMed  CAS  Google Scholar 

  139. Oberhardt MA, Zarecki R, Gronow S et al (2015) Harnessing the landscape of microbial culture media to predict new organism–media pairings. Nat Commun 6:8493

    Article  PubMed  CAS  Google Scholar 

  140. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194(16):4151–4160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Burch AY, Browne PJ, Dunlap CA et al (2011) Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production. Environ Microbiol 13(10):2681–2691

    Article  PubMed  CAS  Google Scholar 

  142. Lin SC, Carswell K, Sharma M et al (1994) Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl Microbiol Biotechnol 41:281–285

    Article  CAS  Google Scholar 

  143. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Bode HB, Bethe B, Höfs R et al (2002) Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem 3(7):619–627

    Article  PubMed  CAS  Google Scholar 

  145. Yoon V, Nodwell JR (2014) Activating secondary metabolism with stress and chemicals. J Ind Microbiol Biotechnol 41(2):415–424

    Article  PubMed  CAS  Google Scholar 

  146. Bhatnagar I, Kim SK (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8(10):2673–2701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Hutchinson CR (2003) Polyketide and non-ribosomal peptide synthases: falling together by coming apart. Proc Natl Acad Sci U S A 100(6):3010–3012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Craney A, Ahmed S, Nodwell J (2013) Towards a new science of secondary metabolism. J Antibiot 66(7):387–400

    Article  CAS  Google Scholar 

  149. Dusane DH, Matkar P, Venugopalan VP et al (2011) Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms. Curr Microbiol 62:974–980

    Article  PubMed  CAS  Google Scholar 

  150. Xue Y, Sherman DH (2000) Alternative modular polyketide synthase expression controls macrolactone structure. Nature 403(6769):571–575

    Article  PubMed  CAS  Google Scholar 

  151. Huo L, Hug JJ, Fu C et al (2019) Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 36(10):1412–1436

    Article  PubMed  CAS  Google Scholar 

  152. Parages ML, Gutiérrez-Barranquero JA, Reen FJ et al (2016) Integrated (meta) genomic and synthetic biology approaches to develop new biocatalysts. Mar Drugs 14(3):62

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Sabrina Linden, Lisa-Marie Kirschen, and Phillip Venter for their contributions to the figures. The scientific activities of ST and SK were financially supported by the Ministry of Culture and Research within the framework of the NRW-Strategieprojekt BioSC (No. 313/323-400-002 13) and by Federal Ministry of Education and Research in the Project GlycoX (grant number 031B0866A); MT, NS, and AB were supported through grants (UID 87326 and 105876) by the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla Trindade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trindade, M., Sithole, N., Kubicki, S., Thies, S., Burger, A. (2021). Screening Strategies for Biosurfactant Discovery. In: Hausmann, R., Henkel, M. (eds) Biosurfactants for the Biobased Economy. Advances in Biochemical Engineering/Biotechnology, vol 181. Springer, Cham. https://doi.org/10.1007/10_2021_174

Download citation

Publish with us

Policies and ethics