Skip to main content
Log in

Activating secondary metabolism with stress and chemicals

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The available literature on the secondary or nonessential metabolites of the streptomycetes bacteria suggests that there may be poorly expressed or “cryptic” compounds that have yet to be identified and that may have significant medical utility. In addition, it is clear that there is a large and complex regulatory network that controls the production of these molecules in the laboratory and in nature. Two approaches that have been taken to manipulating the yields of secondary metabolites are the use of various stress responses and, more recently, the use of precision chemical probes. Here, we review the status of this work and outline the challenges and opportunities afforded by each of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adamidis T, Riggle P, Champness W (1990) Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol 172:2962–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmed S, Craney A, Pimentel-Elardo SM, Nodwell JR (2012) A synthetic, species-specific activator of secondary metabolism and sporulation in Streptomyces coelicolor. ChemBioChem 14:83–91. doi:10.1002/cbic.201200619

    Article  PubMed  Google Scholar 

  3. Aubel-Sadron G, Londos-Gagliardi D (1984) Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review. Biochimie 66:333–352

    Article  CAS  PubMed  Google Scholar 

  4. Baltz RH (2006) Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33:507–513. doi:10.1007/s10295-005-0077-9

    Article  CAS  PubMed  Google Scholar 

  5. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr opin pharma 8:557–563. doi:10.1016/j.coph.2008.04.008

    Article  CAS  Google Scholar 

  6. Bartell A, Phatak A, Horn K, Postelnick M (2010) Drug interactions involving antifungal drugs: time course and clinical significance. Curr Fungal Infect Rep 4:103–110. doi:10.1007/s12281-010-0014-x

    Article  Google Scholar 

  7. Bentley SD, Chater KF, Cerdeno-Tarraga A-M et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  8. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  9. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  10. Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3 (2) metabolism. Genome Res 15:820–829. doi:10.1101/gr.3364705

    Article  CAS  PubMed  Google Scholar 

  11. Bucca G, Brassington AME, Hotchkiss G et al (2003) Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol Microbiol 50:153–166. doi:10.1046/j.1365-2958.2003.03696.x

    Article  CAS  PubMed  Google Scholar 

  12. Bucca G, Brassington AM, Schönfeld HJ, Smith CP (2000) The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressor†. Mol Microbiol 38:1093–1103

    Article  CAS  PubMed  Google Scholar 

  13. Bucca G, Hindle Z, Smith CP (1997) Regulation of the dnaK operon of Streptomyces coelicolor A3 (2) is governed by HspR, an autoregulatory repressor protein. J Bacteriol 179:5999–6004

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bucca G, Laing E, Mersinias V et al (2009) Development and application of versatile high-density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon. Genome Biol 10:R5. doi:10.1186/gb-2009-10-1-r5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bursy J, Kuhlmann AU, Pittelkow M et al (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74:7286–7296. doi:10.1128/AEM.00768-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chu BC, Garcia-Herrero A, Johanson TH et al (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611. doi:10.1007/s10534-010-9361-x

    Article  CAS  PubMed  Google Scholar 

  17. Corre C, Song L, O’Rourke S et al (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. P Natl Acad Sci 105:17510–17515

    Article  CAS  Google Scholar 

  18. Craney A, Ahmed S, Nodwell J (2013) Towards a new science of secondary metabolism. J Antibiot. doi:10.1038/ja.2013.25

    PubMed  Google Scholar 

  19. Craney A, Ozimok C, Pimentel-Elardo SM et al (2012) Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol 19:1020–1027. doi:10.1016/j.chembiol.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  20. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochemistry and molecular biology of plants, pp 1250–1318

  21. Davies J (2009) Darwin and microbiomes. EMBO Rep 10:805. doi:10.1038/embor.2009.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10. doi:10.1016/j.cbpa.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  23. Davies J, Ryan KS (2012) Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 7:252–259. doi:10.1021/cb200337h

    Article  CAS  PubMed  Google Scholar 

  24. Davis NK, Chater KF (1990) Spore colour in Streptomyces coelicolor A3 (2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4:1679–1691

    Article  CAS  PubMed  Google Scholar 

  25. de Lima Procópio RE, da Silva IR, Martins MK et al (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16:466–471. doi:10.1016/j.bjid.2012.08.014

    Article  Google Scholar 

  26. Derewacz DK, Goodwin CR, McNees CR et al (2013) Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proc Natl Acad Sci 110:2336–2341. doi:10.1073/pnas.1218524110/-/DCSupplemental

    Article  CAS  PubMed  Google Scholar 

  27. Di Marco A, Gaetani M, Scarpinato B (1969) Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother Rep 53:33–37

    PubMed  Google Scholar 

  28. Doull JL, Ayer SW, Singh AK, Thibault P (1993) Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot 46:869

    Article  CAS  PubMed  Google Scholar 

  29. Doull JL, Singh AK, Hoare M, Ayer SW (1994) Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol 13:120–125

    Article  CAS  PubMed  Google Scholar 

  30. Elliot MA, Buttner MJ, Nodwell JR (2007) Multicellular development in Streptomyces. Multicellularity and differentiation, Myxobacteria, pp 419–439

    Google Scholar 

  31. Elliot MA, Talbot NJ (2004) Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr Opin Microbiol 7:594–601. doi:10.1016/j.mib.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  32. Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Micro 7:36–49. doi:10.1038/nrmicro1968

    Article  Google Scholar 

  33. Foley TL, Young BS, Burkart MD (2009) Phosphopantetheinyl transferase inhibition and secondary metabolism. FEBS J 276:7134–7145. doi:10.1111/j.1742-4658.2009.07425.x

    Article  CAS  PubMed  Google Scholar 

  34. Goh E-B, Yim G, Tsui W et al (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci 99:17025–17030

    Article  CAS  PubMed  Google Scholar 

  35. Granger J, Price NM (1999) The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol Oceanogr 44:541–555

    Article  CAS  Google Scholar 

  36. Gust B, Challis GL, Fowler K et al (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci 100:1541–1546

    Article  CAS  PubMed  Google Scholar 

  37. Hara O, Beppu T (1982) Mutants blocked in streptomycin production in Streptomyces griseus-the role of A-factor. J Antibiot 35:349–358

    Article  CAS  PubMed  Google Scholar 

  38. Hayes A, Hobbs G, Smith CP et al (1997) Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3 (2). J Bacteriol 179:5511–5515

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hempel AM, Cantlay S, Molle V et al (2012) The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc Natl Acad Sci USA. doi:10.1073/pnas.1207409109

    Google Scholar 

  40. Hesketh A, Hill C, Mokhtar J et al (2011) Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope. BMC Genomics 12:226. doi:10.1186/1471-2164-12-226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Horinouchi S, Beppu T (1994) A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol Microbiol 12:859–864

    Article  CAS  PubMed  Google Scholar 

  42. Hosaka T, Ohnishi-Kameyama M, Muramatsu H et al (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotech 27:462–464

    Article  CAS  Google Scholar 

  43. Huang J, Lih C-J, Pan K-H, Cohen SN (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Gene dev 15:3183–3192. doi:10.1101/gad.943401

    Article  CAS  PubMed  Google Scholar 

  44. Ikeda H, Ishikawa J, Hanamoto A et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotech 21:526–531. doi:10.1038/nbt820

    Article  Google Scholar 

  45. Jakeman DL, Bandi S, Graham CL et al (2009) Antimicrobial activities of jadomycin B and structurally related analogues. Antrimicrob Agents Ch 53:1245–1247. doi:10.1128/AAC.00801-08

    Article  CAS  Google Scholar 

  46. Laureti L, Song L, Huang S et al (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci 108:6258–6263. doi:10.1073/pnas.1019077108/-/DCSupplemental

    Article  CAS  PubMed  Google Scholar 

  47. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269. doi:10.1038/nchembio731

    Article  CAS  PubMed  Google Scholar 

  48. Law BK (2005) Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hemat 56:47–60. doi:10.1016/j.critrevonc.2004.09.009

    Article  Google Scholar 

  49. Lian W, Jayapal KP, Charaniya S et al (2008) Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). BMC Genomics 9:56. doi:10.1186/1471-2164-9-56

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liao Y, Wei Z-H, Bai L et al (2009) Effect of fermentation temperature on validamycin A production by Streptomyces hygroscopicus 5008. J Biotechnol 142:271–274. doi:10.1016/j.jbiotec.2009.04.015

    Article  CAS  PubMed  Google Scholar 

  51. Lin Z, Torres JP, Ammon MA et al (2013) A bacterial source for mollusk pyrone polyketides. Chem Biol 20:73–81. doi:10.1016/j.chembiol.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  52. Liu G, Chater KF, Chandra G et al (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol R 77:112–143. doi:10.1128/MMBR.00054-12

    Article  CAS  Google Scholar 

  53. Makitrynskyy R, Ostash B, Tsypik O et al (2013) Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 3:130121. doi:10.1093/protein/14.8.529

    Article  PubMed  PubMed Central  Google Scholar 

  54. Maresca JA, Romberger SP, Bryant DA (2008) Isorenieratene biosynthesis in green sulfur bacteria requires the cooperative actions of two carotenoid cyclases. J Bacteriol 190:6384–6391. doi:10.1128/JB.00758-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McKenzie NL, Thaker M, Koteva K et al (2010) Induction of antimicrobial activities in heterologous streptomycetes using alleles of the Streptomyces coelicolor gene absA1. J Antibiot 63:177–182. doi:10.1038/ja.2010.13

    Article  CAS  PubMed  Google Scholar 

  56. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol R 71:413–451. doi:10.1128/MMBR.00012-07

    Article  CAS  Google Scholar 

  57. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726. doi:10.1074/jbc.270.45.26723

    CAS  PubMed  Google Scholar 

  58. Ochi K, Tanaka Y, Tojo S (2013) Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. J Ind Microbiol Biotechnol. doi:10.1007/s10295-013-1349-4

    PubMed  Google Scholar 

  59. Ohnishi Y, Ishikawa J, Hara H et al (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060. doi:10.1128/JB.00204-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111

    Article  CAS  PubMed  Google Scholar 

  61. Onaka H (2009) Biosynthesis of indolocarbazole and goadsporin, two different heterocyclic antibiotics produced by actinomycetes. Biosci Biotechnol Biochem 73:2149–2155. doi:10.1271/bbb.90263

    Article  CAS  PubMed  Google Scholar 

  62. Onaka H, Tabata H, Igarashi Y et al (2001) Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J Antibiot 54:1036–1044

    Article  CAS  PubMed  Google Scholar 

  63. Ōmura S, Ikeda H, Ishikawa J et al (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci 98:12215–12220

    Article  PubMed  Google Scholar 

  64. Puglia AM, Vohradsky J, Thompson CJ (1995) Developmental control of the heat-shock stress regulon in Streptomyces coelicolor. Mol Microbiol 17:737–746

    Article  CAS  PubMed  Google Scholar 

  65. Recio E, Colinas Á, Rumbero Á et al (2004) PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593. doi:10.1074/jbc.M402340200

    Article  CAS  PubMed  Google Scholar 

  66. Rigali S, Titgemeyer F, Barends S et al (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675. doi:10.1038/embor.2008.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schatz A, Bugie E, Waksman SA et al (2005) The classic: streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Clin Orthop Relat R 437:3–6. doi:10.1097/01.blo.0000175887.98112.fe

    Article  Google Scholar 

  68. Servant P, Mazodier P (2001) Negative regulation of the heat shock response in Streptomyces. Arch Microbiol 176:237–242. doi:10.1007/s002030100321

    Article  CAS  PubMed  Google Scholar 

  69. Tahlan K, Ahn SK, Sing A et al (2007) Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 63:951–961. doi:10.1111/j.1365-2958.2006.05559.x

    Article  CAS  PubMed  Google Scholar 

  70. Takano H, Obitsu S, Beppu T, Ueda K (2005) Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187:1825–1832. doi:10.1128/JB.187.5.1825-1832.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721

    Article  CAS  PubMed  Google Scholar 

  72. Waksman SA (1961) Antibiotics—20 years later. B New York Acad Med 37:202

    CAS  Google Scholar 

  73. Waksman SA, Schatz A, Reynolds DM (2010) Production of antibiotic substances by actinomycetes*†. Ann NY Acad Sci 1213:112–124. doi:10.1111/j.1749-6632.2010.05861.x

    Article  PubMed  Google Scholar 

  74. Wang R, Mast Y, Wang J et al (2012) Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87:30–48. doi:10.1111/mmi.12080

    Article  PubMed  Google Scholar 

  75. Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390. doi:10.1007/s002030100345

    Article  CAS  PubMed  Google Scholar 

  76. Wei Z-H, Wu H, Bai L et al (2012) Temperature shift-induced reactive oxygen species enhanced validamycin A production in fermentation of Streptomyces hygroscopicus 5008. Bioprocess Biosyst Eng 35:1309–1316. doi:10.1007/s00449-012-0718-0

    Article  CAS  PubMed  Google Scholar 

  77. Willey Joanne M, Justin R Nodwell (2008) Diverse cell–cell signaling molecules control formation of aerial hyphae and secondary metabolism in streptomycetes. In: Chemical communication among bacteria, vol 91

  78. Xu Y, Willems A, Au-yeung C et al (2012) A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor. mBio 3:e00191–12–e00191–12. doi: 10.1128/mBio.00191-12

  79. Yang K, Han L, He J et al (2001) A repressor-response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230. Gene 279:165–173

    Article  CAS  PubMed  Google Scholar 

  80. Yang K, Han L, Vining LC (1995) Regulation of jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR2. J Bacteriol 177:6111–6117

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    Article  CAS  PubMed  Google Scholar 

  82. Zähner H (1979) What are secondary metabolites? Folia Microbiol 24:435–443

    Article  Google Scholar 

  83. Zhou W-W, Ma Ben, Tang Y-J et al (2012) Enhancement of validamycin A production by addition of ethanol in fermentation of Streptomyces hygroscopicus 5008. Bioresource Technol 114:616–621. doi:10.1016/j.biortech.2012.03.124

    Article  CAS  Google Scholar 

  84. Zhu H, Sandiford SK, Wezel GP (2013) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol. doi:10.1007/s10295-013-1309-z

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin R. Nodwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, V., Nodwell, J.R. Activating secondary metabolism with stress and chemicals. J Ind Microbiol Biotechnol 41, 415–424 (2014). https://doi.org/10.1007/s10295-013-1387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1387-y

Keywords

Navigation