Skip to main content
Log in

On the Influence of Grain Boundary Misorientation on the Severe Plastic Deformation of Aluminum Bicrystals: A Three-Dimensional Crystal Plasticity Finite Element Method Study

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A three-dimensional crystal plasticity finite element method model is developed to investigate the influence of the grain boundary (GB) misorientation on the equal-channel angular pressing deformation of aluminum bicrystals. Aluminum bicrystals with symmetric 〈112〉 tilt boundaries and misorientations of 9 deg (low angle), 15 deg (transitional), and 30 deg (high angle) have been designed to study the influence of GB misorientations on the deformed areas near GBs. The numerical results indicate that a high-angle grain boundary acts as a barrier in terms of Mises stress distribution, plastic slip, and lattice rotation, while the aluminum bicrystal with low-angle grain boundary still behaves similarly to a single crystal. An intermediate configuration is found for the aluminum bicrystal with transitional grain boundary. It is also found that the geometry of the GB after deformation depends on the initial orientation of the grain at the lower part of the billet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.J. Vachhani, R.D. Doherty, and S.R. Kalidindi: Int. J. Plasticity, 2016, vol. 81, pp. 87–101.

    Article  Google Scholar 

  2. M. Koster, K.C. Le, and B.D. Nguyen: Int. J. Plasticity, 2015, vol. 69, pp. 134–51.

    Article  Google Scholar 

  3. D. Gonzalez, I. Simonovski, P.J. Withers, and J.Q. da Fonseca: Int. J. Plasticity, 2014, vol. 61, pp. 49–63.

    Article  Google Scholar 

  4. I. Benedetti, V. Gulizzi, and V. Mallardo: Int. J. Plasticity, 2016, vol. 83, pp. 202–24.

    Article  Google Scholar 

  5. M. Liu, C. Lu, K.A. Tieu, and K. Zhou: J. Mater. Res., 2015, vol. 30, pp. 2485–99.

    Article  Google Scholar 

  6. D.M. Kochmann and K.C. Le: Int. J. Plasticity, 2008, vol. 24, pp. 2125–47.

    Article  Google Scholar 

  7. E.O. Hall: Proc. Phys. Soc. London B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  8. R.W. Armstrong: Acta Mech., 2014, vol. 225, pp. 1013–28.

    Article  Google Scholar 

  9. M.S. Huang, Z.H. Li, and J. Tong: Int. J. Plasticity, 2014, vol. 61, pp. 112–27.

    Article  Google Scholar 

  10. H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, and R.H. Wagoner: Int. J. Plasticity, 2011, vol. 27, pp. 1328–54.

    Article  Google Scholar 

  11. D.E. Spearot, K.I. Jacob, and D.L. McDowell: Int. J. Plasticity, 2007, vol. 23, pp. 143–60.

    Article  Google Scholar 

  12. S. Zaefferer, J.C. Kuo, Z. Zhao, M. Winning, and D. Raabe: Acta Mater., 2003, vol. 51, pp. 4719–35.

    Article  Google Scholar 

  13. C. Rey and A. Zaoui: Acta Metall. Mater., 1982, vol. 30, pp. 523–35.

    Article  Google Scholar 

  14. J.D. Mote and J.E. Dorn: Trans. Am. Inst. Min. Met. Eng., 1960, vol. 218, pp. 491–97.

    Google Scholar 

  15. M.I. Latypov, M.G. Lee, Y. Beygelzimer, D. Prilepo, Y. Gusar, and H.S. Kim: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1248–60.

    Article  Google Scholar 

  16. W.Z. Han, H.J. Yang, X.H. An, R.Q. Yang, S.X. Li, S.D. Wu, and Z.F. Zhang: Acta Mater., 2009, vol. 57, pp. 1132–46.

    Article  Google Scholar 

  17. Y. Wadamori, K. Hirayama, H. Fujiwara, T. Uenoya, and H. Miyamoto: J. Jpn. Inst. Met., 2013, vol. 77, pp. 348–52.

    Article  Google Scholar 

  18. K. Hirayama, K. Nagai, H. Fujiwara, and H. Miyamoto: Mater. Trans., 2013, vol. 54, pp. 1077–82.

    Article  Google Scholar 

  19. L.S. Toth: Scripta Mater., 2008, vol. 59, pp. 381–84.

    Article  Google Scholar 

  20. I.J. Beyerlein and L.S. Toth: Progr. Mater. Sci., 2009, vol. 54, pp. 427–510.

    Article  Google Scholar 

  21. W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Acta Mater., 2007, vol. 55, pp. 5889–5900.

    Article  Google Scholar 

  22. S.R. Kalidindi, B.R. Donohue, and S.Y. Li: Int. J. Plasticity, 2009, vol. 25, pp. 768–79.

    Article  Google Scholar 

  23. S. Li, B.R. Donohue, and S.R. Kalidindi: Mater. Sci. Eng. A–Struct., 2008, vol. 480, pp. 17–23.

    Article  Google Scholar 

  24. S.Y. Li, S.R. Kalidindi, and I.J. Beyerlein: Mater. Sci. Eng. AStruct., 2005, vol. 410, pp. 207–12.

    Article  Google Scholar 

  25. P.D. Wu, Y. Huang, and D.J. Lloyd: Scripta Mater., 2006, vol. 54, pp. 2107–12.

    Article  Google Scholar 

  26. R.J. Asaro: J. Appl. Mech.-Trans. ASME, 1983, 50: 921–34.

    Article  Google Scholar 

  27. R.J. Asaro and J.R. Rice: J. Mech. Phys. Solids, 1977, vol. 25, pp. 309–38.

    Article  Google Scholar 

  28. D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall. Mater., 1982, vol. 30, pp. 1087–1119.

    Article  Google Scholar 

  29. R.J. Asaro: Adv. Appl. Mech., 1983, vol. 23, pp. 1–115.

    Article  Google Scholar 

  30. R.J. Asaro and A. Needleman: Acta Metall. Mater., 1985, vol. 33, pp. 923–53.

    Article  Google Scholar 

  31. M. Liu, K.A. Tieu, K. Zhou, and C.T. Peng: Philos. Mag., 2016, vol. 96, pp. 261–73.

    Article  Google Scholar 

  32. Y.G. Huang: Harvard University, Cambridge, MA, 1991.

  33. J.L. Bassani and T.Y. Wu: Proc. R. Soc. London Mater., 1991, vol. 435, pp. 21–41.

    Article  Google Scholar 

  34. M. Liu, K.A. Tieu, K. Zhou, and C.T. Peng: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2717–25.

    Article  Google Scholar 

  35. R. Hill: J. Mech. Phys. Solids, 1966, vol. 14, p. 95.

    Article  Google Scholar 

  36. Y. Fukuda, K. Oh, M. Furukawa, and T.G. Langdon: Acta Mater., 2004, vol. 52, pp. 1387–95.

    Article  Google Scholar 

  37. S.Y. Li, I.J. Beyerlein, C.T. Necker, D.J. Alexander, and M. Bourke: Acta Mater., 2004, vol. 52, pp. 4859–75.

    Article  Google Scholar 

  38. P. Franciosi, M. Berveiller, and A. Zaoui: Acta Metall. Mater., 1980, vol. 28, pp. 273–83.

    Article  Google Scholar 

  39. Mao Liu, Cheng Lu, Kiet Tieu, and Hailiang Yu: Mater. Sci. Eng. A, 2014, vol. 619, pp. 57–65.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the valuable suggestions from Professor Ronald W. Armstrong, University of Maryland, the financial support from the Japan Society for the Promotion of Science (JSPS), and the high-performance computing (HPC) infrastructure from Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 24, 2018.

Appendix

Appendix

See Figure A1.

Fig. A1
figure 13

Flowchart showing how the UMAT works and its criterion for convergence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Nambu, S., Zhou, K. et al. On the Influence of Grain Boundary Misorientation on the Severe Plastic Deformation of Aluminum Bicrystals: A Three-Dimensional Crystal Plasticity Finite Element Method Study. Metall Mater Trans A 50, 2399–2412 (2019). https://doi.org/10.1007/s11661-019-05178-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05178-0

Navigation