Skip to main content
Log in

Investigation of the Anisotropic Mechanical Behaviors of Copper Single Crystals Through Nanoindentation Modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A crystal plasticity finite element method constitutive model was developed to investigate the anisotropic mechanical behaviors of (001), (011), and (111) initially orientated copper (Cu) single crystals during nanoindentation deformation. The numerical load-indentation depth curve and hardness-indentation depth curve were compared with experimental observations to validate the established three-dimensional (3D) CPFEM model. The difference of indentation loads between (111) crystal and (001) crystal is ~10.68 pct, and the difference of indentation modulus between (111) surface and (001) surface is ~10.80 pct. The numerical results show the noticeable indentation size effect for three crystals, and slightly different hardness values on different crystallographic planes. The equivalent plastic strain and lattice rotation angles were also analyzed on three through-thickness cross sections to study the plastic deformation-induced texture anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Tabor, J I Met 1951, vol. 79, pp. 1-18.

    Google Scholar 

  2. W. C. Oliver and G. M. Pharr, Journal of Materials Research 1992, vol. 7, pp. 1564-1583.

    Article  Google Scholar 

  3. Y. Wang, D. Raabe, C. Kluber and F. Roters, Acta Materialia 2004, vol. 52, pp. 2229-2238.

    Article  Google Scholar 

  4. D. G. Flom and R. Komanduri, Wear 2002, vol. 252, pp. 401-429.

    Article  Google Scholar 

  5. J. D. Kiely and J. E. Houston, Phys Rev B 1998, vol. 57, pp. 12588-12594.

    Article  Google Scholar 

  6. A. K. Bhattacharya and W. D. Nix, Int J Solids Struct 1988, vol. 24, pp. 881-891.

    Article  Google Scholar 

  7. J. L. Bassani and T. Y. Wu, P Roy Soc Lond a Mat 1991, vol. 435, pp. 21-41.

    Article  Google Scholar 

  8. O. Casals, J. Ocenasek and J. Alcala, Acta Mater 2007, vol. 55, pp. 55-68.

    Article  Google Scholar 

  9. J. Alcala, O. Casals and J. Ocenasek, J Mech Phys Solids 2010, vol. 58, pp. 751-751.

    Article  Google Scholar 

  10. A. F. Gerday, M. Ben Bettaieb, L. Duchêne, N. Clément, H. Diarra and A. M. Habraken, Acta Materialia 2009, vol. 57, pp. 5186-5195.

    Article  Google Scholar 

  11. Y. X. Gan, X. Chen and M. H. Zhao, J Mech Mater Struct 2008, vol. 3, pp. 1429-1445.

    Article  Google Scholar 

  12. M. Liu, C. Lu, K. A. Tieu and K. Zhou, J Mater Res 2015, vol. 30, pp. 2485-2499.

    Article  Google Scholar 

  13. M. Liu, C. Lu, K. A. Tieu, C. T. Peng and C. Kong, Sci Rep-Uk 2015, vol. 5.

    Article  Google Scholar 

  14. M. Knezevic, B. Drach, M. Ardeljan and I. J. Beyerlein, Comput Method Appl M 2014, vol. 277, pp. 239-259.

    Article  Google Scholar 

  15. M. Ardeljan, M. Knezevic, T. Nizolek, I. J. Beyerlein, N. A. Mara and T. M. Pollock, Int J Plasticity 2015, vol. 74, pp. 35-57.

    Article  Google Scholar 

  16. M. Liu, C. Lu, A. K. Tieu and G. Y. Y. Deng, Steel Res Int 2013, vol. 84, pp. 1196-1202.

    Article  Google Scholar 

  17. G. Y. Deng, A. K. Tieu, L. Y. Si, L. H. Su, C. Lu, H. Wang, M. Liu, H. T. Zhu and X. H. Liu, Comp Mater Sci 2014, vol. 81, pp. 2-9.

    Article  Google Scholar 

  18. G. Y. Deng, C. Lu, L. H. Su, A. K. Tieu, J. T. Li, M. Liu, H. T. Zhu and X. H. Liu, Comp Mater Sci 2014, vol. 81, pp. 79-88.

    Article  Google Scholar 

  19. M. Liu, A. K. Tieu, C. Lu, H. T. Zhu and G. Y. Deng, Comp Mater Sci 2014, vol. 81, pp. 30-38.

    Article  Google Scholar 

  20. M. Liu, C. Lu, K. Tieu and H. L. Yu, Mat Sci Eng a-Struct 2014, vol. 619, pp. 57-65.

    Article  Google Scholar 

  21. M. Liu, C. Lu and A. K. Tieu, Int J Solids Struct 2015, vol. 54, pp. 42-49.

    Article  Google Scholar 

  22. R. J. Asaro and J. R. Rice, Journal of the Mechanics and Physics of Solids 1977, vol. 25, pp. 309-338.

    Article  Google Scholar 

  23. R. J. Asaro, Jom-J Min Met Mat S 1983, vol. 35, pp. A28-A28.

    Google Scholar 

  24. R. J. Asaro and A. Needleman, Acta Metall Mater 1985, vol. 33, pp. 923-953.

    Article  Google Scholar 

  25. D. Peirce, R. J. Asaro and A. Needleman, Acta Metallurgica 1982, vol. 30, pp. 1087-1119.

    Article  Google Scholar 

  26. G. I. Taylor, journal of the Institute of Metals 1938, vol. 62, pp. 307-324.

    Google Scholar 

  27. R Hill, Journal of the Mechanics and Physics of Solids 1966, vol. 14, pp. 95-102.

    Article  Google Scholar 

  28. R. J. Asaro, J Appl Mech-T Asme 1983, vol. 50, pp. 921-934.

    Article  Google Scholar 

  29. Y.G. Huang: Harvard University, 1991.

  30. C. Lu, G. Y. Deng, A. K. Tieu, L. H. Su, H. T. Zhu and X. H. Liu, Acta Mater 2011, vol. 59, pp. 3581-3592.

    Article  Google Scholar 

  31. D. Peirce, R. J. Asaro and A. Needleman, Acta Metall Mater 1983, vol. 31, pp. 1951-1976.

    Article  Google Scholar 

  32. M. Liu, C. Lu and K. A. Tieu, In TMS Annual Meeting, (2014), pp 317-337.

    Google Scholar 

  33. Y. G. Wei, X. Z. Wang and M. H. Zhao, J Mater Res 2004, vol. 19, pp. 208-217.

    Article  Google Scholar 

  34. Y. Liu, B. Wang, M. Yoshino, S. Roy, H. Lu and R. Komanduri, J Mech Phys Solids 2005, vol. 53, pp. 2718-2741.

    Article  Google Scholar 

  35. T. Y. Wu, J. L. Bassani and C. Laird, P Roy Soc Lond a Mat 1991, vol. 435, pp. 1-19.

    Article  Google Scholar 

  36. J. Alcala, O. Casals and J. Ocenasek, J Mech Phys Solids 2008, vol. 56, pp. 3277-3303.

    Article  Google Scholar 

  37. K. W. McElhaney, J. J. Vlassak and W. D. Nix, J Mater Res 1998, vol. 13, pp. 1300-1306.

    Article  Google Scholar 

  38. G. Z. Voyiadjis and R. Peters, Acta Mech 2010, vol. 211, pp. 131-153.

    Article  Google Scholar 

  39. W. Wang and K. Lu, Philos Mag 2006, vol. 86, pp. 5309-5320.

    Article  Google Scholar 

  40. W. Wang and K. Lu, J Mater Res 2002, vol. 17, pp. 2314-2320.

    Article  Google Scholar 

  41. T. Inamura, H. Hosoda, K. Wakashima and S. Miyazaki, Mater Trans 2005, vol. 46, pp. 1597-1603.

    Article  Google Scholar 

  42. J. J. Vlassak and W. D. Nix, Philos Mag A 1993, vol. 67, pp. 1045-1056.

    Article  Google Scholar 

  43. J. J. Vlassak and W. D. Nix, Journal of the Mechanics and Physics of Solids 1994, vol. 42, pp. 1223-1245.

    Article  Google Scholar 

  44. J. A. Wert, Q. Liu and N. Hansen, Acta Mater 1997, vol. 45, pp. 2565-2576.

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support from an Australia Research Council Discovery Grant (DP0773329) and the scholarship of UPA and IPTA from the University of Wollongong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Liu.

Additional information

Manuscript submitted July 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Tieu, K.A., Zhou, K. et al. Investigation of the Anisotropic Mechanical Behaviors of Copper Single Crystals Through Nanoindentation Modeling. Metall Mater Trans A 47, 2717–2725 (2016). https://doi.org/10.1007/s11661-016-3439-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3439-1

Keywords

Navigation