Skip to main content
Log in

Modeling and Characterization of Texture Evolution in Twist Extrusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Twist extrusion (TE) is a severe plastic deformation method with a potential for commercialization. Deformation during the TE process is non-uniform and non-monotonic, which is expected to result in significant and non-trivial microstructural changes in metallic materials. In this study, texture evolution during TE of pre-textured copper was investigated. Experimental characterization of textures after various numbers of passes demonstrated that TE can be used for producing uniformly weak textures in pre-textured copper. Crystal plasticity simulations were found to run into the problem known as strain reversal texture. In particular, crystal plasticity simulations predicted the return of initial texture upon strain reversal in the first pass of TE, whereas the experimental texture was not reversed and had components related to simple shear. Grain refinement, imperfect strain reversal, and material asymmetry are proposed to be responsible for the occurrence of strain reversal texture in TE. Effects of the non-random initial texture on the microstructure and texture evolution are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Beygelzimer, D. Orlov, A. Korshunov, S. Synkov, V. Varyukhin, I. Vedernikova, A. Reshetov, A. Synkov, L. Polyakov and I. Korotchenkova: Solid State Phenom. 2006, vol. 114, pp. 69-78.

    Article  Google Scholar 

  2. Y. Beygelzimer, D. Orlov, and V. Varyukhin: in Ultrafine Grained Materials II, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., The Minerals, Metals & Materials Society, Warrendale, PA, 2002, pp. 297–304.

  3. M. I. Latypov, M.-G. Lee, Y. Beygelzimer and H. S. Kim: Metals and Materials International 2015, vol. 21, pp. 569-579.

    Article  Google Scholar 

  4. S.A.A. AkbariMousavi and S.R. Bahadori: Mater. Sci. Eng. A 2011, vol. 528, pp. 1242-1246.

    Article  Google Scholar 

  5. N. M. Shkatulyak: Int. J. Adv. Mater. Sci. Eng. 2014, vol. 3, pp. 15-25.

    Google Scholar 

  6. V. V. Usov, N. M. Shkatulyak, P. A. Bryukhanov and Y. Beygelzimer: High Pressure Phys. Tech. 2011, vol. 21, pp. 102-109.

    Google Scholar 

  7. V. V. Usov, N. M. Shkatulyak, P. A. Bryukhanov and Y. Beygelzimer: High Pressure Phys. Tech. 2011, vol. 21, pp. 103-108.

    Google Scholar 

  8. S.R. Bahadori, K. Dehghani, and S.A.A. Akbari Mousavi: Mater. Lett. 2015, vol. 152, pp. 48–52.

  9. ASTM Standard E407, 2007e1, Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA, 2007.

  10. R. Hielscher and H. Schaeben: Journal of Applied Crystallography 2008, vol. 41, pp. 1024-1037.

    Article  Google Scholar 

  11. S. R. Kalidindi, C. A. Bronkhorst and L. Anand: Journal of the Mechanics and Physics of Solids 1992, vol. 40, pp. 537-569.

    Article  Google Scholar 

  12. S.R. Kalidindi: PhD Thesis, MIT, Cambridge, 1993.

  13. S.V. Dobatkin, G.A. Salishev, A.A. Kuznecov, A. Reshetov, S. Synkov and T.N. Konkova: Physics and Techniques of High Pressure 2006, vol. 16, pp. 23-36.

    Google Scholar 

  14. M. I. Latypov, E. Y. Yoon, D. J. Lee, R. Kulagin, Y. Beygelzimer, M. S. Salehi and H.S. Kim: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2014, vol. 45, pp. 2232-2241.

    Article  Google Scholar 

  15. D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji and Z. Horita: Materials Science and Engineering A 2009, vol. 519, pp. 105-111.

    Article  Google Scholar 

  16. A. Reshetov, A. Korshunov, A. Smolyakov, Y. Beygelzimer, V. Varyukhin, I. Kaganova and A. Morozov: Materials Science Forum 2011, vol. 667-669, pp. 851-856.

    Google Scholar 

  17. G. R. Canova, U. F. Kocks and J. J. Jonas: Acta Metallurgica 1984, vol. 32, pp. 211-226.

    Article  Google Scholar 

  18. L. S. Toth, P. Gilormini and J. J. Jonas: Acta Metallurgica 1988, vol. 36, pp. 3077-3091.

    Article  Google Scholar 

  19. B. Beausir, L. S. Tóth and K. W. Neale: Acta Materialia 2007, vol. 55, pp. 2695-2705.

    Article  Google Scholar 

  20. F. Montheillet, P. Gilormini and J. J. Jonas: Acta Metallurgica 1985, vol. 33, pp. 705-717.

    Article  Google Scholar 

  21. L. S. Tóth, K. W. Neale and J. J. Jonas: Acta Metallurgica 1989, vol. 37, pp. 2197-2210.

    Article  Google Scholar 

  22. S. Li, I. J. Beyerlein and M. A. M. Bourke: Materials Science and Engineering: A 2005, vol. 394, pp. 66-77.

    Article  Google Scholar 

  23. S. Suwas, R. Arruffat-Massion, L.S. Tóth, A. Eberhardt, J.J. Fundenberger, and W. Skrotzki: Metall. Mater. Trans. A 2006, vol. 37A, pp. 739–53.

  24. S. Suwas, B. Beausir, L.S. Tóth, J.J. Fundenberger, and G. Gottstein: Acta Mater., 2011, vol. 59, pp. 1121–33.

  25. I. J. Beyerlein and L. S. Tóth: Progress in Materials Science 2009, vol. 54, pp. 427-510.

    Article  Google Scholar 

  26. Bunge HJ (1982) Texture analysis in materials science: mathematical methods. Butterworths, London.

    Google Scholar 

  27. Y. Beygelzimer, V. Varyukhin, S. Synkov and D. Orlov: Materials Science and Engineering A 2009, vol. 503, pp. 14-17.

    Article  Google Scholar 

  28. S. Li, I. J. Beyerlein, C. T. Necker, D. J. Alexander and M. Bourke: Acta materialia 2004, vol. 52, pp. 4859-4875.

    Article  Google Scholar 

  29. I. J. Beyerlein, S. Li, C. T. Necker, D. J. Alexander and C. N. Tomé: Philosophical Magazine 2005, vol. 85, pp. 1359-1394.

    Article  Google Scholar 

  30. A.D. Rollett and S.I. Wright: in Textures and Anisotropy. Preferred Orientations in Polycrystals and Their Effect on Materials Properties, U.F. Kocks, C.N. Tome, and H.-R. Wenk, eds., Cambridge University Press, Cambridge, UK, 1998.

  31. A.D. Rollett, T.C. Lowe, U.F. Kocks, and M.G. Stout: in Eighth International Conference on Textures of Materials, J.S. Kallend and G. Gottstein, eds., The Metallurgical Society, Warrendale, PA, 1988, pp. 437–478.

  32. P. D. Wu, K. W. Neale and E. Van der Giessen: International Journal of Plasticity 1996, vol. 12, pp. 1199-1219.

    Article  Google Scholar 

  33. M. Berta, D. Orlov and P. B. Prangnell: International Journal of Materials Research 2007, vol. 98, pp. 200-204.

    Article  Google Scholar 

  34. H. Zendehdel and A. Hassani: Materials and Design 2012, vol. 37, pp. 13-18.

    Article  Google Scholar 

  35. S. R. Kalidindi, B. R. Donohue and S. Li: International Journal of Plasticity 2009, vol. 25, pp. 768-779.

    Article  Google Scholar 

  36. Y. Beygelzimer, A. Reshetov, O. Prokof’eva and R. Kulagin: Journal of Materials Processing Technology 2009, vol. 209, pp. 3650-3656.

    Article  Google Scholar 

  37. R. Kulagin, M. I. Latypov, H. S. Kim, V. Varyukhin and Y. Beygelzimer: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2013, vol. 44, pp. 3211-3220.

    Article  Google Scholar 

  38. L. Anand and S. R. Kalidindi: Mechanics of Materials 1994, vol. 17, pp. 223-243.

    Article  Google Scholar 

  39. Y. T. Zhu and T. C. Lowe: Materials Science and Engineering A 2000, vol. 291, pp. 46-53.

    Article  Google Scholar 

  40. L. S. Tóth, Y. Estrin, R. Lapovok and C. Gu: Acta Materialia 2010, vol. 58, pp. 1782-1794.

    Article  Google Scholar 

  41. C. F. Gu and L. S. Tóth: Acta Materialia 2011, vol. 59, pp. 5749-5757.

    Article  Google Scholar 

  42. K. Kitayama, C. N. Tomé, E. F. Rauch, J. J. Gracio and F. Barlat: International Journal of Plasticity 2013, vol. 46, pp. 54-69.

    Article  Google Scholar 

  43. M.-G. Lee, R. H. Wagoner, J. K. Lee, K. Chung and H. Y. Kim: International Journal of Plasticity 2008, vol. 24, pp. 545-582.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. L.S. Toth for insightful comments on the manuscript. Dr. B.-C. Suh and Dr. Y. Jeong are also gratefully acknowledged for assistance with XRD measurements. The current research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014R1A2A1A10051322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Marat I. Latypov and Myoung-Gyu Lee have contributed equally to the present work.

Manuscript submitted June 18, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latypov, M.I., Lee, MG., Beygelzimer, Y. et al. Modeling and Characterization of Texture Evolution in Twist Extrusion. Metall Mater Trans A 47, 1248–1260 (2016). https://doi.org/10.1007/s11661-015-3298-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3298-1

Keywords

Navigation