Skip to main content

Advertisement

Log in

Enrichment factors to assess the anthropogenic influence on PM10 in Gijón (Spain)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Thirty-two chemical species were determined in PM10 sampled at a suburban site on the north coast of Spain. Enrichment factors were applied to infer their soil/non-soil origin. The geochemical ratios were calculated using two databases: soil composition from locations in the surroundings of the sampling station and the Earth’s average upper-crust composition. In the present study, dissimilarities were found between the enrichment factors obtained using these two databases. Al, Ti, La and Ce were taken as the reference elements to normalise the data, reaching analogous conclusions. Bi, Cd, Cu, Sb, Se, Sn and Zn were associated with predominantly non-soil apportionments. As the relevance of soil/non-soil sources for the other analysed elements was found to be variable, they were probably of mixed origin. Furthermore, pairs of elements showed strong relationships, thus pointing to a common origin. Na–Mg and Co–Ni, with Pearson correlation coefficients above 0.9, were respectively related to marine and industrial apportionments. Enrichment factors have proved to be a useful tool to distinguish the soil/non-soil origin of chemical species present in airborne particulate matter. However, the choice of the reference database for soil composition considerably determined the accuracy of the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Information available at The Spanish Register of Emissions and Pollutant Sources (PRTR-Spain)

  2. Information available at the Geological and Mining Institute of Spain (http://info.igme.es/Geoquimica/)

  3. Information available at the Geological and Mining Institute of Spain (http://info.igme.es/cartografiadigital/geologica/Magna50.aspx)

References

  • Adamo P, Giordano S, Naimo D, Bargagli R (2008) Geochemical properties of airbone particulate matter (PM10) collected by automatic device and biomonitors in a Mediterranean urban environment. Atmos Environ 42:346–357. doi:10.1016/j.atmosenv.2007.09.018

    Article  CAS  Google Scholar 

  • Adgate JL, Mongin SJ, Pratt GC, Zhang J, Field MP, Ramachandran G, Sexton K (2007) Relationships between personal, indoor, and outdoor exposures to trace elements in PM2.5. Sci Total Environ 386:21–32. doi:10.1016/j.scitotenv.2007.07.007

    Article  CAS  Google Scholar 

  • Aleksandropoulou V, Torseth K, Lazaridis M (2015) Contribution of natural sources to PM emissions over the Metropolitan areas of Athens and Thessaloniki. Aerosol Air Qual Res 15:1300–1312. doi:10.4209/aaqr.2014.11.0278

    Article  Google Scholar 

  • Alghamdi MA, Almazroui M, Shamy M, Redal MA, Alkhalaf AK, Hussein MA, Khoder MI (2015) Characterization and elemental composition of atmospheric aerosol loads during springtime dust storm in western Saudi Arabia. Aerosol Air Qual Res 15:440–453. doi:10.4209/aaqr.2014.06.0110

    CAS  Google Scholar 

  • Alharbi B, Shareef MM, Husain T (2015) Study of chemical characteristics of particulate matter concentrations in Riyadh, Saudi Arabia. Atmos Pollut Res 6:88–98. doi:10.5094/APR.2015.011

    Article  CAS  Google Scholar 

  • Almeida SM, Lage J, Fernández B, Garcia S, Reis MA, Chaves PC (2015) Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Sci Total Environ 521:411–420. doi:10.1016/j.scitotenv.2015.03.112

    Article  Google Scholar 

  • ATSDR (2007) Toxicological profile for barium and barium compounds. Agency for toxic substances and disease registry. http://www.atsdr.cdc.gov/toxprofiles/tp24.pdf. Accessed 27 Nov 2015

  • Avino P, Capannesi G, Rosada A (2014) Source identification of inorganic airborne particle fraction (PM10) at ultratrace levels by means of INAA short irradiation. Environ Sci Pollut R 21:4527–4538. doi:10.1007/s11356-013-2418-y

    Article  CAS  Google Scholar 

  • Bouhila Z, Mouzai M, Azli T, Nedjar A, Mazouzi C, Zergoug Z, Boukhadra D, Chegrouche S, Lounici H (2015) Investigation of aerosol trace element concentrations nearby Algiers for environmental monitoring using instrumental neutron activation analysis. Atmos Res 166:49–59. doi:10.1016/j.atmosres.2015.06.013

    Article  CAS  Google Scholar 

  • Budhavant K, Safai PD, Rao PSP (2015) Sources and elemental composition of summer aerosols in the Larsemann Hills (Antarctica). Environ Sci Pollut R 22:2041–2050. doi:10.1007/s11356-014-3452-0

    Article  CAS  Google Scholar 

  • Campos-Ramos A, Aragón-Piña A, Galindo-Estrada I, Querol X, Alastuey A (2009) Characterization of atmospheric aerosols by SEM in a rural area in the western part of México and its relation with different pollution sources. Atmos Environ 43:6159–6167. doi:10.1016/j.atmosenv.2009.09.004

    Article  CAS  Google Scholar 

  • Cao J, Shen Z, Chow JC, Qi G, Watson JG (2009) Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology 7:161–168. doi:10.1016/j.partic.2009.01.009

    Article  CAS  Google Scholar 

  • Cesari D, Contini D, Genga A, Siciliano M, Elefante C, Baglivi F, Daniele L (2012) Analysis of raw soils and their re-suspended PM10 fractions: characterisation of source profiles and enrichment factors. Appl Geochem 27:1238–1246. doi:10.1016/j.apgeochem.2012.02.029

    Article  CAS  Google Scholar 

  • Dai QL, Bi XH, Wu JH, Zhang YF, Wang J, Xu H, Yao L, Jiao L, Feng YC (2015) Characterization and source identification of heavy metals in ambient PM10 and PM2.5 in an integrated iron and steel industry zone compared with a background site. Aerosol Air Qual Res 15:875–887. doi:10.4209/aaqr.2014.09.0226

    CAS  Google Scholar 

  • EEA (2012) Particulate matter from natural sources and related reporting under the EU air quality directive in 2008 and 2009. EEA Technical report No 10/2012. European Environment Agency. http://www.eea.europa.eu/publications/particulate-matter-from-natural-sources. Accessed 13 Sept 2015

  • Flores-Rangel RM, Rodríguez-Espinosa PF, Montes de Oca-Valero JA, Mugica-Álvarez V, Ortiz-Romero-Vargas ME, Navarrete-López M, Dorantes-Rosales HJ, Morales-García SS (2015) Temporal variation of PM10 and metal concentrations in Tampico, Mexico. Air Qual Atmos Health 8:367–378. doi:10.1007/s11869-014-0291-6

    Article  CAS  Google Scholar 

  • Gianini MFD, Gehrig R, Fischer A, Ulrich A, Wichser A, Hueglin C (2012) Chemical composition of PM10 in Switzerland: an analysis for 2008/2009 and changes since 1998/1999. Atmos Environ 54:97–106. doi:10.1016/j.atmosenv.2012.02.037

    Article  CAS  Google Scholar 

  • Government of the Principality of Asturias (2009) Evidences and potential effects of climate change in Asturias (in Spanish). https://www.asturias.es/medioambiente/publicaciones/ficheros/LIBRO%20COMPLETO_ISBN_Evidencias.pdf. Accessed 25 Aug 2016

  • Grigoratos T, Samara C, Voutsa D, Manoli E, Kouras A (2014) Chemical composition and mass closure of ambient coarse particles at traffic and urban-background sites in Thessaloniki, Greece. Environ Sci Pollut R 21:7708–7722. doi:10.1007/s11356-014-2732-z

    Article  CAS  Google Scholar 

  • Gupta RK, Majumdar D, Trivedi JV, Bhanarkar AD (2012) Particulate matter and elemental emissions from a cement kiln. Fuel Process Technol 104:343–351. doi:10.1016/j.fuproc.2012.06.007

    Article  CAS  Google Scholar 

  • Hueglin C, Gehrig R, Baltensperge U, Gysel M, Monn C, Vonmont H (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651. doi:10.1016/j.atmosenv.2004.10.027

    Article  CAS  Google Scholar 

  • IGME (1974) Geological map of Spain S. 1:50.000 Gijón. Publication Service of the Ministry of Industry and Energy. Geological and Mining Institute of Spain (in Spanish). http://info.igme.es/cartografia/datos/magna50/memorias/MMagna0014.pdf. Accessed 15 Sept 2016

  • IGME Geological and Mining Institute of Spain. Geological Map of Spain: http://info.igme.es/cartografiadigital/geologica/Magna50.aspx. Accessed 15 Sept 2016a

  • IGME Geological and Mining Institute of Spain. Geochemistry of Spain: http://info.igme.es/Geoquimica/. Accessed 15 Sept 2016b

  • Jiang SY, Kaul DS, Yang F, Sun L, Ning Z (2015) Source apportionment and water solubility of metals in size segregated particles in urban environments. Sci Total Environ 533:347–355. doi:10.1016/j.scitotenv.2015.06.146

    Article  CAS  Google Scholar 

  • Lage J, Wolterbeek H, Almeida SM (2016) Contamination of surface soils from a heavy industrial area in the north of Spain. J Radioanal Nucl Chem 309:429–437. doi:10.1007/s10967-016-4757-x

    Article  CAS  Google Scholar 

  • Lyu XP, Wang ZW, Cheng HR, Zhang F, Zhang G, Wang XM, Ling ZH, Wang N (2015) Chemical characteristics of submicron particles (PM1.0) in Wuhan, Central China. Atmos Res 161:169–178. doi:10.1016/j.atmosres.2015.04.009

    Article  Google Scholar 

  • Mariet C, Gaudry A, Ayrault S, Moskura M, Denayer F, Bernard N (2011) Heavy metal bioaccumulation by the bryophyte Scleropodium purum at three French sites under various influences: rural conditions, traffic, and industry. Environ Monit Assess 174:107–118. doi:10.1007/s10661-010-1442-3

    Article  CAS  Google Scholar 

  • Megido L, Negral L, Castrillón L, Marañón E, Fernández-Nava Y, Suárez-Peña B (2016a) Traffic tracers in a suburban location in northern Spain: relationship between carbonaceous fraction and metals. Environ Sci Pollut R 23:8669–8678. doi:10.1007/s11356-015-5955-8

    Article  CAS  Google Scholar 

  • Megido L, Suárez-Peña B, Negral L, Castrillón L, Suárez S, Fernández-Nava Y, Marañón E (2016b) Relationship between physico-chemical characteristics and potential toxicity of PM10. Chemosphere 162:73–79. doi:10.1016/j.chemosphere.2016.07.067

    Article  CAS  Google Scholar 

  • Minguillón MC, Querol X, Baltensperger U, Prévôt ASH (2012) Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Sci Total Environ 427:191–202. doi:10.1016/j.scitotenv.2012.04.030

    Article  Google Scholar 

  • Moreno T, Querol X, Alastuey A, de la Rosa J, Sánchez de la Campa AM, Minguillón MC, Pandolfi M, González-Castanedo Y, Monfort E, Gibbons W (2010) Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci Total Environ 408:4569–4579. doi:10.1016/j.scitotenv.2010.06.016

    Article  CAS  Google Scholar 

  • Negral L, Moreno-Grau S, Moreno J, Querol X, Viana MM, Alastuey A (2008) Natural and anthropogenic contributions to PM10 and PM2.5 in an urban area in the western Mediterranean coast. Water Air Soil Poll 192:227–238. doi:10.1007/s11270-008-9650-y

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M (2015) Handbook on the toxicology of metals. 4th ed. Volume I: general considerations. Academic Press/Elsevier, Amsterdam

    Google Scholar 

  • Paraskevopoulou D, Liakakou E, Gerasopoulos E, Mihalopoulos N (2015) Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece. Sci Total Environ 527:165–178. doi:10.1016/j.scitotenv.2015.04.022

    Article  Google Scholar 

  • Paulino SA, Oliveira RL, Loyola J, Minho AS, Arbilla G, Quiterio SL, Escaleira V (2014) Trace metals in PM10 and PM2.5 samples collected in a highly industrialized chemical/petrochemical area and its urbanized surroundings. B Environ Contam Tox 92:590–595. doi:10.1007/s00128-014-1219-4

    Article  CAS  Google Scholar 

  • Perrino C, Catrambone M, Dalla Torre S, Rantica E, Sargolini T, Canepari S (2014) Seasonal variations in the chemical composition of particulate matter: a case study in the Po Valley. Part I: macro-components and mass closure. Environ Sci Pollut R 1:3999–4009. doi:10.1007/s11356-013-2067-1

    Article  Google Scholar 

  • Perrino C, Marcovecchio F, Tofful L, Canepari S (2015) Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environ Sci Pollut R 22:9204–9214. doi:10.1007/s11356-014-4019-9

    Article  CAS  Google Scholar 

  • Port of Gijón (2014) Annual report. Statistic data. https://www.puertogijon.es/recursos/doc/Memorias/2089_37372015124131.pdf. Accessed 26 Aug 2015

  • Poulakis E, Theodosi C, Bressi M, Sciare J, Ghersi V, Mihalopoulos N (2015) Airborne mineral components and trace metals in Paris region: spatial and temporal variability. Environ Sci Pollut R 22:14663–14672. doi:10.1007/s11356-015-4679-0

    Article  CAS  Google Scholar 

  • (2016)PRTR-Spain Spanish Register of Emissions and Pollutant Sources. http://www.en.prtr-es.es/Informes/InventarioInstalacionesIPPC.aspx. Accessed 8 Oct 2015

  • Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231. doi:10.1016/j.atmosenv.2007.05.022

    Article  CAS  Google Scholar 

  • Rashki A, Eriksson PG, Rautenbach CJ, de W, Kaskaoutis DG, Grote W, Dykstra J (2013) Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere 90:227–236. doi:10.1016/j.chemosphere.2012.06.059

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (2000) Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol 34:5084–5091. doi:10.1021/es001339o

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337:91–107. doi:10.1016/j.scitotenv.2004.06.011

    Article  CAS  Google Scholar 

  • Rogula-Kozłowska W, Majewski G, Czechowski PO (2015) The size distribution and origin of elements bound to ambient particles: a case study of a polish urban area. Environ Monit Assess 187:240. doi:10.1007/s10661-015-4450-5

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) 3.01 ─ composition of the continental crust. Treatise On Geochemistry 3:1–64. doi:10.1016/B0-08-043751-6/03016-4

    Article  Google Scholar 

  • Rushdi AI, Al-Mutlaq KF, Al-Otaibi M, El-Mubarak AH, Simoneit BRT (2013) Air quality and elemental enrichment factors of aerosol particulate matter in Riyadh City, Saudi Arabia. Arab J Geosci 6:585–599. doi:10.1007/s12517-011-0357-9

    Article  CAS  Google Scholar 

  • Salma I, Maenhaut W (2006) Changes in elemental composition and mass of atmospheric aerosol pollution between 1996 and 2002 in a central European city. Environ Pollut 143:479–488. doi:10.1016/j.envpol.2005.11.042

    Article  CAS  Google Scholar 

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Berlin

    Book  Google Scholar 

  • Silva F, Godoi R, Tauler R, André P, Saldiva P, Grieken R, Rodriguez de Marchi MR (2015) Elemental composition of PM2.5 in Araraquara City (Southeast Brazil) during seasons with and without sugar cane burning. J Environ Prot 6:426–434. doi:10.4236/jep.2015.65041

    Article  CAS  Google Scholar 

  • Song X, Shao L, Yang S, Song R, Sun L, Cen S (2015) Trace elements pollution and toxicity of airborne PM10 in a coal industry city. Atmos Pollut Res 6:469–475. doi:10.5094/APR.2015.052

    Article  CAS  Google Scholar 

  • Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. B Am Meteorol Soc 96:2059–2077. doi:10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  • Tsai MY, Hoek G, Eeftens M, de Hoogh K, Beelen R, Beregszászi T, Cesaroni G, Cirach M, Cyrys J, De Nazelle A, de Vocht F, Ducret-Stich R, Eriksen K, Galassi C, Gražuleviciene R, Gražulevicius T, Grivas G, Gryparis A, Heinrich J, Hoffmann B, Iakovides M, Keuken M, Krämer U, Künzli N, Lanki T, Madsen C, Meliefste K, Merritt AS, Mölter A, Mosler G, Nieuwenhuijsen MJ, Pershagen G, Phuleria H, Quass U, Ranzi A, Schaffner E, Sokhi R, Stempfelet M, Stephanou E, Sugiri D, Taimisto P, Tewis M, Udvardy O, Wang M, Brunekreef B (2015) Spatial variation of PM elemental composition between and within 20 European study areas—results of the ESCAPE project. Environ Int 84:181–192. doi:10.1016/j.envint.2015.04.015

    Article  CAS  Google Scholar 

  • Viana M, Querol X, Alastuey A, Ballester F, Llop S, Esplugues A, Fernández-Patier R, García dos Santos S, Herce MD (2008) Characterising exposure to PM aerosols for an epidemiological study. Atmos Environ 42:1552–1568. doi:10.1016/j.atmosenv.2007.10.087

    Article  CAS  Google Scholar 

  • Viana M, Pey J, Querol X, Alastuey A, de Leeuw F, Lükewille A (2014) Natural sources of atmospheric aerosols influencing air quality across Europe. Sci Total Environ 472:825–833. doi:10.1016/j.scitotenv.2013.11.140

    Article  CAS  Google Scholar 

  • Wang L, Liang T, Zhang Q, Li K (2014) Rare earth element components in atmospheric particulates in the Bayan Obo mine region. Environ Res 131:64–70. doi:10.1016/j.envres.2014.02.006

    Article  CAS  Google Scholar 

  • Zhang R, Cao J, Tang Y, Arimoto R, Shen Z, Wu F, Han Y, Wang G, Zhang J, Li G (2014) Elemental profiles and signatures of fugitive dusts from Chinese deserts. Sci Total Environ 472:1121–1129. doi:10.1016/j.scitotenv.2013.11.011

    Article  CAS  Google Scholar 

  • Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace-metals at South Pole. Science 183:198–200. doi:10.1126/science.183.4121.198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Principality of Asturias Regional Government (research project: Particulate matter in the air of Asturias: levels, composition and source contribution (in Spanish), ref. SV-PA-13-ECOEMP-65). The authors gratefully acknowledge the Geological and Mining Institute of Spain for providing the Geochemistry Database (http://info.igme.es/Geoquimica/), the Spanish Meteorological Agency (AEMET), the Meteorological Station of Gijón (http://meteogijon.es/) and the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or the READY website (http://www.ready.noaa.gov) used in this publication. An acknowledgment is also given for the comments made during the revision process for contributing to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Negral.

Additional information

Responsible editor:Gerhard Lammel

Electronic supplementary material

ESM 1

(PDF 538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megido, L., Negral, L., Castrillón, L. et al. Enrichment factors to assess the anthropogenic influence on PM10 in Gijón (Spain). Environ Sci Pollut Res 24, 711–724 (2017). https://doi.org/10.1007/s11356-016-7858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7858-8

Keywords

Navigation