Skip to main content

Advertisement

Log in

Recognition of the importance of geogenic sources in the content of metals in PM2.5 collected in the Mexico City Metropolitan Area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study of airborne metals in urban areas is relevant due to their toxic effects on human health and organisms. In this study, we analyzed metals including rare earth elements (REE) in particles smaller than 2.5 μm (PM2.5), collected at five sites around the Mexico City Metropolitan Area (MCMA), during three periods in 2011: April (dry-warm season, DW), August (rainy season, R), and November (dry-cold season, DC). Principal component analysis allowed identifying factors related to geogenic sources and factors related to anthropogenic sources. The recognition of the high impact of geogenic sources in PM2.5 is in agreement with the REE distribution patterns, which show similar behavior as those shown by igneous rocks, confirming the influence of the regional geogenic material. Metals associated to geogenic sources showed higher concentration (p < 0.05) at NE of the MCMA and a significant correlation with prevalent winds. Geogenic metals show similar seasonal distribution, with the highest concentration during DW (p < 0.05), suggesting a possible metal resuspension effect which affects more significantly at lower relative humidity (RH). The metals associated with anthropogenic sources are in agreement with the urban complexity of the area, showing homogenous distribution throughout MCMA (p > 0.05) and no similar seasonal pattern among them. These unexpected results exposed outstanding information regarding the identification of different geogenic sources as the main contributors of metals in the atmospheric environment in the MCMA and highlighted the importance of meteorology in the spatial and seasonal metal patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amador-Muñoz, O., Villalobos-Pietrini, R., Miranda, J., & Vera-Avila, L. E. (2011). Organic compounds of PM2.5 in Mexico Valley: spatial and temporal patterns, behavior and sources. Science of the Total Environment, 409(8), 1453–1465. https://doi.org/10.1016/j.scitotenv.2010.11.026.

    Article  Google Scholar 

  • Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., & Moreno, T. (2009). Spatial and chemical patterns of PM 10 in road dust deposited in urban environment. Atmospheric Environment, 43(9), 1650–1659. https://doi.org/10.1016/j.atmosenv.2008.12.009.

    Article  CAS  Google Scholar 

  • Chen, Y., Schleicher, N., Chen, Y., Chai, F., & Norra, S. (2014). The influence of governmental mitigation measures on contamination characteristics of PM2.5 in Beijing. Science of the Total Environment, 490, 647–658. https://doi.org/10.1016/j.scitotenv.2014.05.049.

    Article  CAS  Google Scholar 

  • Cheng, Y., Lee, S. C., Ho, K. F., Chow, J. C., Watson, J. G., Louie, P. K. K., Cao, J. J., & Hai, X. (2010). Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong. Science of the Total Environment, 408(7), 1621–1627. https://doi.org/10.1016/j.scitotenv.2009.11.061.

    Article  CAS  Google Scholar 

  • Chow, J. C., Watson, J. G., Edgerton, S. A., & Vega, E. (2002). Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Science of the Total Environment, 287(3), 177–201. https://doi.org/10.1016/S0048-9697(01)00982-2.

    Article  CAS  Google Scholar 

  • Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 1–9.

    Google Scholar 

  • Dockery, D. W., & Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 15, 107–132.

    Article  CAS  Google Scholar 

  • Dongarrà, G., Manno, E., Varrica, D., Lombardo, M., & Vultaggio, M. (2010). Study on ambient concentrations of PM 10, PM 10–2.5, PM 2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmospheric Environment, 44(39), 5244–5257.

    Article  Google Scholar 

  • Evensen, N. M., Hamilton, P. J., & O'nions, R. K. (1978). Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42(8), 1199–1212. https://doi.org/10.1016/0016-7037(78)90114-X.

    Article  CAS  Google Scholar 

  • Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM 2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128, 67–74. https://doi.org/10.1016/j.ecoenv.2016.01.030.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B.J., Pitts, Jr. J.N. (2000). Chemistry of the upper and lower atmosphere-. Theory, experiments, and applications. Academic Press. USA. ISBN 0-12-257060-x

  • Gao, Y., Guo, X., Ji, H., Li, C., Ding, H., Briki, M., Tang, L., & Zhang, Y. (2016). Potential threat of heavy metals and PAHs in PM2. 5 in different urban functional areas of Beijing. Atmospheric Research, 178, 6–16.

    Article  Google Scholar 

  • Gauderman, W. J., Avol, E., Gilliland, G. F., Vora, H., Duncan Thomas, M. S., Berhane, K., McConnel, R., Kuenzli, M., Lurmann, F., Rappaport, E., Margolis, H., Bates, D., & Peters, J. (2004). The effect of air pollution on lung development from 10 to 18 years of age. New England Journal of Medicine, 351, 1057–1067.

    Article  CAS  Google Scholar 

  • Guzmán-Morales, J., Morton-Bermea, O., Hernández-Álvarez, E., Rodríguez-Salazar, M. T., García-Arreola, M. E., & Tapia-Cruz, V. (2011). Assessment of atmospheric metal pollution in the urban area of Mexico City, using Ficus benjamina as biomonitor. Bulletin of Environmental Contamination and Toxicology, 86(5), 495–500. https://doi.org/10.1007/s00128-011-0252-9.

    Article  Google Scholar 

  • Hieu, N. T., & Lee, B. K. (2010). Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmospheric Research, 98(2), 526–537. https://doi.org/10.1016/j.atmosres.2010.08.019.

    Article  CAS  Google Scholar 

  • Hu, Z. (2009). Spatial analysis of MODIS aerosol optical depth, PM2.5 and chronic coronary heart disease. International Journal of Health Geographics, 8(1), 27. https://doi.org/10.1186/1476-072X-8-27.

    Article  Google Scholar 

  • Jáuregui, O. E. (2000). El clima de la Ciudad de México (p. 2000). UNAM, México: Plaza y Valdés.

    Google Scholar 

  • Karanasiou, A. A., Thomaidis, N. S., Eleftheriadis, K., & Siskos, P. A. (2005). Comparative study of pretreatment methods for the determination of metals in atmospheric aerosol by electrothermal atomic absorption spectrometry. Talanta, 65(5), 1196–1202. https://doi.org/10.1016/j.talanta.2004.08.044.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Joshi, U. M., & Balasubramanian, R. (2006). Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. Analytica Chimica Acta, 576(1), 23–30. https://doi.org/10.1016/j.aca.2006.05.051.

    Article  CAS  Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. The Science of the Total Environment, 407(24), 6196–6204. https://doi.org/10.1016/j.scitotenv.2009.08.050.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Huang, D. Y., Zhang, H. J., Wang, S., & Chen, X. F. (2017). Exposure to particulate matter 2.5 (PM2.5) induced macrophage-dependent inflammation, characterized by increased Th1/Th17 cytokine secretion and cytotoxicity. International Immunopharmacology, 50, 139–145. https://doi.org/10.1016/j.intimp.2017.06.019.

    Article  CAS  Google Scholar 

  • Miranda, J., Crespo, I., & Morales, M. A. (2000). Absolute principal component analysis of atmospheric aerosols in Mexico City. Environemental Science and Pollution Research, 7(1), 14–18. https://doi.org/10.1065/espr199910.006.

    Article  CAS  Google Scholar 

  • Miranda, J., Barrera, V. A., Espinosa, A. A., Galindo, O. S., & Meinguer, J. (2005). PIXE analysis of atmospheric aerosols in Mexico City. X-Ray Spectrometry, 34(3), 315–319. https://doi.org/10.1002/xrs.823.

    Article  CAS  Google Scholar 

  • Moreno, T., Querol, X., Alastuey, A., Viana, M., Salvador, P., De la Campa, A., Artiñano, B., de la Rosa, J., & Gibbons, W. (2006a). Variations in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmospheric Environment, 40(35), 6791–6803. https://doi.org/10.1016/j.atmosenv.2006.05.074.

    Article  CAS  Google Scholar 

  • Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., Mounkaila, M., Josef, E., & Gibbons, W. (2006b). Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere, 65(2), 261–270. https://doi.org/10.1016/j.chemosphere.2006.02.052.

    Article  CAS  Google Scholar 

  • Moreno-Rodríguez, V., Del Rio-Salas, R., Adams, D. K., Ochoa-Landin, L., Zepeda, J., Gómez-Alvarez, A., Palafox-Reyes, J., & Meza-Figueroa, D. (2015). Historical trends and sources of TSP in a Sonoran desert city: Can the North America Monsoon enhance dust emissions? Atmospheric Environment, 110, 111–121. https://doi.org/10.1016/j.atmosenv.2015.03.049.

    Article  Google Scholar 

  • Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009a). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101(3), 218–224. https://doi.org/10.1016/j.gexplo.2008.07.002.

    Article  CAS  Google Scholar 

  • Morton-Bermea, O., Hernandez, E., Martinez-Pichardo, E., Soler-Arechalde, A. M., Santa-Cruz, R. L., Gonzalez-Hernandez, G., Beramendi-Orosco, L., & Urrutia-Fucugauchi, J. (2009b). Mexico City topsoils: heavy metals vs. magnetic susceptibility. Geoderma, 151(3), 121–125. https://doi.org/10.1016/j.geoderma.2009.03.019.

    Article  CAS  Google Scholar 

  • Pinkerton, K. E., Green, F. H. Y., Saiki, C., Vallyathan, V., Plopper, C. G., Gopal, V., Hung, D., Bahne, E. B., Lin, S., Ménache, M. G., & Schenker, M. B. (2000). Distribution of particulate matter and tissue remodeling in the human lung. Environmental Health Perspectives, 108(11), 1063–1069. https://doi.org/10.1289/ehp.001081063.

    Article  CAS  Google Scholar 

  • Pope, C. A., Dockery, D., & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution. Inhalation Toxicology, 7, 1–18.

    Article  CAS  Google Scholar 

  • Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141. https://doi.org/10.1001/jama.287.9.1132.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Viana, M. M., Rodriguez, S., Artiñano, B., Salvador, P., Garcia Dos Santos, S., Fernandez-Patier, R., Ruiz, C. R., de la Rosa, J., Sánchez de la Campa, A., Menendez, M., & Gil, J. I. (2004). Speciation and origin of PM10 and PM2.5 in Spain. Journal of Aerosol Science, 35(9), 1151–1172. https://doi.org/10.1016/j.jaerosci.2004.04.002.

    Article  CAS  Google Scholar 

  • Querol, X., Pey, J., Minguillón, M. C., Pérez, N., Alastuey, A., Viana, M., Moreno, T., Bernabé, R. M., Blanco, S., Cárdenas, B., Vega, E., Sosa, G., Escalona, S., Ruiz, H., & Artiñano, B. (2008). PM speciation and sources in Mexico during the MILAGRO-2006 campaign. Atmospheric Chemistry and Physics, 8(1), 111–128.

    Article  CAS  Google Scholar 

  • Ragosta, M., Caggiano, R., Macchiato, M., Sabia, S., & Trippetta, S. (2008). Trace elements in daily collected aerosol: level characterization and source identification in a four-year study. Atmospheric Research, 89(1), 206–217. https://doi.org/10.1016/j.atmosres.2008.01.009.

    Article  CAS  Google Scholar 

  • Ravindra, K., Stranger, M., & Van Grieken, R. (2008). Chemical characterization and multivariate analysis of atmospheric PM2.5 particles. Journal of Atmospheric Chemistry, 59(3), 199–218. https://doi.org/10.1007/s10874-008-9102-5.

    Article  CAS  Google Scholar 

  • Rodríguez-Salazar, M. T., Morton-Bermea, O., Hernández-Álvarez, E., Lozano, R., & Tapia-Cruz, V. (2011). The study of metal contamination in urban topsoils of Mexico City using GIS. Environment and Earth Science, 62(5), 899–905. https://doi.org/10.1007/s12665-010-0584-5.

    Article  Google Scholar 

  • Rolph, G., Stein, A., & Stunder, B. (2017). Real-time Environmental Applications and Display system: READY. Environmental Modelling and Software, 95, 210–228. https://doi.org/10.1016/j.envsoft.2017.06.025.

    Article  Google Scholar 

  • Rosas, I., Belmont, R., & Jauregui, E. (1995). Seasonal variation of atmospheric lead levels in three sites in Mexico City. Atmosfera, 8(4).

  • Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1.

    Article  Google Scholar 

  • Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., & Yin, L. (2012). Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research, 104, 264–272.

    Article  Google Scholar 

  • Yuan, Z., Lau, A. K. H., Zhang, H., Yu, J. Z., Louie, P. K., & Fung, J. C. (2006). Identification and spatiotemporal variations of dominant PM 10 sources over Hong Kong. Atmospheric Environment, 40(10), 1803–1815. https://doi.org/10.1016/j.atmosenv.2005.11.030.

    Article  CAS  Google Scholar 

  • Zhai, Y., Liu, X., Chen, H., Xu, B., Zhu, L., Li, C., & Zeng, G. (2014). Source identification and potential ecological risk assessment of heavy metals in PM 2.5 from Changsha. Sci. The Science of the Total Environment, 493, 109–115. https://doi.org/10.1016/j.scitotenv.2014.05.106.

    Article  CAS  Google Scholar 

  • Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., & Shen, Z. (2013). Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmospheric. Chemical Physics, 13(14), 7053–7074.

    Google Scholar 

  • Zhao, X., Zhang, X., Xu, X., Xu, J., Meng, W., & Pu, W. (2009). Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmospheric Environment, 43(18), 2893–2900. https://doi.org/10.1016/j.atmosenv.2009.03.009.

    Article  CAS  Google Scholar 

  • Zhou, Z., Shao, T., Qin, M., Miao, X., Chang, Y., Sheng, W., Wu, F., & Yu, Y. (2017). The effects of autophagy on vascular endothelial cells induced by airborne PM2.5. Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2017.05.019.

Download references

Acknowledgements

The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication.

Funding

This study was performed with financial support of Project 166295 from CONACyT (Consejo Nacional de Ciencia y Tecnología) and Project CPSG/087A/2014 FA from the SECyTI (Secretaría de Ciencia y Tecnología e Inovacción) as well as from Project IN116614 from DGAPA (Dirección General de Personal Académico, UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofelia Morton-Bermea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morton-Bermea, O., Garza-Galindo, R., Hernández-Álvarez, E. et al. Recognition of the importance of geogenic sources in the content of metals in PM2.5 collected in the Mexico City Metropolitan Area. Environ Monit Assess 190, 83 (2018). https://doi.org/10.1007/s10661-017-6443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6443-z

Keywords

Navigation