Skip to main content
Log in

Growth of Ga2O3 by furnace oxidation of GaN studied by perturbed angular correlations

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Ga2O3 is a promising material for use in “solar-blind” UV-detectors which can be produced efficiently by oxidation of GaN. In this study we focus on the evolution of the oxide layer when GaN is heated in air. The experimental method applied is the perturbed angular correlation (PAC) spectroscopy of γ-rays emitted by radioactive nuclides, here 111Cd and 181Ta, whose parent nuclei are ion implanted into films of GaN grown on sapphire. As the emission pattern for nuclei in GaN is clearly distinct from that of nuclei in Ga2O3, the fraction of probe nuclei in the oxide layer can be directly measured and allows to follow the time dependent growth of the oxide on a scale of less than 100 nm. Additional measurements were carried out with the oxidized sample held at fixed temperatures in the temperature range from 19 K to 973 K showing transitions between the hyperfine interactions of 111Cd in the oxide matrix both at high and low temperatures. A model for these transitions is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, W., Hsueh, T., Chang, S., Huang, G., Hsueh, H.: IEEE Sensors J. 11(4), 999 (2011). doi:10.1109/JSEN.2010.2062176

    Article  Google Scholar 

  2. Frauenfelder, H.: Annu. Rev. Nucl. Sci 2(1), 129 (1953). doi:10.1146/annurev.ns.02.120153.001021

    Article  ADS  MathSciNet  Google Scholar 

  3. Blachot, J.: Nucl. Data Sheets 110(6), 1239 (2009). doi:10.1016/j.nds.2009.04.002

    Article  ADS  Google Scholar 

  4. Wu, S.: Nucl. Data Sheets 106(3), 367 (2005). doi:10.1016/j.nds.2005.11.001

    Article  ADS  Google Scholar 

  5. Valentini, R., Vianden, R.: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623(4), 1002 (2010). doi:10.1016/j.nima.2010.07.084

    Article  ADS  Google Scholar 

  6. Haaks, M., Valentini, R., Vianden, R.: Phys. Status Solidi C 4, 4036 (2007). doi:10.1002/pssc.200675869

    Article  ADS  Google Scholar 

  7. Biersack, J.P., Haggmark, L.G.: Nucl. Instrum. Meth. 174(1–2), 257 (1980). doi:10.1016/0029-554X(80)90440-1

    Article  ADS  Google Scholar 

  8. Ronning, C., Carlson, E., Davis, R.: Phys. Rep. 351(5), 349 (2001). doi:10.1016/S0370-1573(00)00142-3

    Article  ADS  Google Scholar 

  9. King, S.W., Barnak, J.P., Bremser, M.D., Tracy, K.M., Ronning, C., Davis, R.F., Nemanich, R.J.: J. Appl. Phys. 84(9), 5248 (1998). doi:10.1063/1.368814. http://link.aip.org/link/?JAP/84/5248/1

    Article  ADS  Google Scholar 

  10. Zhuang, D., Edgar, J.: Mater. Sci. Eng. R. Rep. 48(1), 1 (2005). doi:10.1016/j.mser.2004.11.002. http://www.sciencedirect.com/science/ article/pii/S0927796X04001251

    Article  Google Scholar 

  11. Forker, M., Herz, W., Hütten, U., Müller, M., ßeler, R.M., Schmidberger, J., Simon, D., Weingarten, A., Bedi, S.C.: Nucl. Inst. Methods Phys. Res. A Accelerators, Spectrometers, Detectors and Associated Equipment 327(2–3), 456 (1993). doi:10.1016/0168-9002(93)90711-P

    ADS  Google Scholar 

  12. Lorenz, K., Ruske, F., Vianden, R.: Phys. Status Solidi B 228(1), 331 (2001). doi:10.1002/1521-3951(200111)228:1<331::AID-PSSB331>3.0.CO;2-6

    Article  ADS  Google Scholar 

  13. Kessler, P., Lorenz, K., Vianden, R.: Def. Diff. Forum 311, 167 (2011). doi:10.4028/www.scientific.net/DDF.311.167

    Article  Google Scholar 

  14. Lorenz, K., Geruschke, T., Alves, E., Vianden, R.: Hyperfine Interact 177, 89 (2007). doi:10.1007/s10751-008-9708-7

    Article  ADS  Google Scholar 

  15. Bartels, J., Freitag, K., Marques, J., Soares, J., Vianden, R.: Hyperfine Interact 120-121, 397 (1999). doi:10.1023/A:1017080902893

    Article  ADS  Google Scholar 

  16. Shitu, J., Pasquevich, A.F.: J. Phys. Condens. Matter 9(29), 6313 (1997). doi:10.1088/0953-8984/9/29/016

    Article  ADS  Google Scholar 

  17. Blanco, M.A., Sahariah, M.B., Jiang, H., Costales, A., Pandey, R.: Phys. Rev. B 72, 184103 (2005). doi:10.1103/PhysRevB.72.184103

    Article  ADS  Google Scholar 

  18. Pasquevich, A.F., Uhrmacher, M., Ziegeler, L., Lieb, K.P.: Phys. Rev. B 48, 10052 (1993). doi:10.1103/PhysRevB.48.10052

    Article  ADS  Google Scholar 

  19. Pasquevich, A.: Hyperfine Interact 60, 791 (1990). doi:10.1007/BF02399871

    Article  ADS  Google Scholar 

  20. Alves, E., da Silva, M., Marques, J., Soares, J., Freitag, K.: Mater. Sci. Eng. B 59(1–3), 207 (1999). doi:10.1016/S0921-5107(98)00392-4

    Article  Google Scholar 

  21. López, I.N., Utrilla, A.D., Nogales, E., Méndez, B., Piqueras, J., Peche, A., Ramírez-Castellanos, J., González-Calbet, J.M.: J. Phys. Chem. C 116(6), 3935 (2012). doi:10.1021/jp210233p

    Article  Google Scholar 

  22. Jacobs, V.L., Rozsnyai, B.F.: Phys. Rev. A 34, 216 (1986). doi:10.1103/PhysRevA.34.216

    Article  ADS  Google Scholar 

  23. Haas, H., Shirley, D.A.: J. Chem. Phys. 58(8), 3339 (1973). doi:10.1063/1.1679661

    Article  ADS  Google Scholar 

  24. Sevik, C., Bulutay, C.: Phys. Rev. B 77, 125414 (2008). doi:10.1103/PhysRevB.77.125414

    Article  ADS  Google Scholar 

  25. Varley, J.B., Janotti, A., Franchini, C., Van de Walle, C.G.: Phys. Rev. B 85, 081109 (2012). doi:10.1103/PhysRevB.85.081109

    Article  ADS  Google Scholar 

  26. Åhman, J., Svensson, G., Albertsson, J.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 52(6), 1336 (1996). doi:10.1107/S0108270195016404

    Article  Google Scholar 

  27. Harwig, T., Kellendonk, F., Slappendel, S.: J. Phys. Chem. Solids 39(6), 675 (1978). doi:10.1016/0022-3697(78)90183-X

    Article  ADS  Google Scholar 

  28. Armstrong, A.M., Crawford, M.H., Jayawardena, A., Ahyi, A., Dhar, S.: J. Appl. Phys. 119(10), 103102 (2016). doi:10.1063/1.4943261

    Article  ADS  Google Scholar 

  29. Onuma, T., Fujioka, S., Yamaguchi, T., Higashiwaki, M., Sasaki, K., Masui, T., Honda, T.: Appl. Phys. Lett. 103(4), 041910 (2013). doi:10.1063/1.4816759

    Article  ADS  Google Scholar 

  30. Pasquevich, A.F., Rentería, M.: Def. Diff. Forum 311, 62 (2011). doi:10.4028/www.scientific.net/DDF.311.62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Steffens.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2016), Leuven, Belgium, 3-8 July 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steffens, M., Vianden, R. & Pasquevich, A.F. Growth of Ga2O3 by furnace oxidation of GaN studied by perturbed angular correlations. Hyperfine Interact 237, 117 (2016). https://doi.org/10.1007/s10751-016-1326-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-016-1326-1

Keywords

Navigation