Skip to main content

Effects of Nanoparticles on Germination, Growth, and Plant Crop Development

  • Chapter
  • First Online:
Agricultural Nanobiotechnology

Abstract

The use of nanotechnologies in agricultural systems has been widely promoted. Nanomaterials have been proposed as a useful tool for the improvement of agricultural practices. Some plants have shown diverse effects in terms of morphological and physiological changes, with uptake and translocation into different parts. A relation has been demonstrated between the dose and the plant response in different crops, with variations from plant to plant. However, the use of nanoparticles for crop production still faces some challenges because of possible toxicity and hazardous effects, and especially because of the lack of experimental evidence that nanomaterials are harmless to plants and humans. Some studies have reported both positive and negative effects of nanoparticles on plant growth and development, depending on the nature of the nanomaterials, application, time of exposure, plant species, and soil characteristics. The objective of this chapter is to describe the effects of the application of nanoparticles on plant development, focusing on the physiological and biochemical mechanisms of plants in relation to nanoparticles. It also reviews the behavior of nanoparticles in the soil and water matrix and their effects on microbial communities interacting with plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdal Dayem A, Hossain MK, Lee SB et al (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120

    Article  PubMed Central  CAS  Google Scholar 

  • Adams J, Wright M, Wagner H et al (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T, Kundu S, Rao AS (2016a) Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutr 39(1):136–146

    Article  CAS  Google Scholar 

  • Adhikari T, Sarkar D, Mashayekhi H et al (2016b) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39(1):99–115

    Article  CAS  Google Scholar 

  • Anderson A, McLean JE, Jacobson AR et al (2017) CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production: a review. J Agric Food Chem 66(26):6513–6524. https://doi.org/10.1021/acs.jafc.7b01302

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Singh N, Singh MK et al (2013) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanoparticle Res 15(7):1770

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Sharma P, Kumar S et al (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310

    Article  CAS  Google Scholar 

  • Askary M, Talebi SM, Amini F et al (2017) Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija 63(1):65–75

    Article  Google Scholar 

  • Auvinen H, Gagnon V, Rousseau DP et al (2017) Fate of metallic engineered nanomaterials in constructed wetlands: prospection and future research perspectives. Rev Environ Sci Biotechnol 16(2):207–222

    Article  Google Scholar 

  • Badawy AME, Luxton TP, Silva RG et al (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266

    Article  PubMed  CAS  Google Scholar 

  • Baker S, Volova T, Prudnikova SV, Satish S, Nagendra Prasad MN (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental Toxicology and Pharmacology 53:10–17

    Article  CAS  PubMed  Google Scholar 

  • Balbus JM, Maynard AD, Colvin VL et al (2007) Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ Health Perspect 115(11):1654

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes RJ, van der Gast CJ, Riba O et al (2010) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12):3907–3919

    Article  CAS  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B et al (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124

    Article  CAS  Google Scholar 

  • Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81(3):387–393

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth–promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Boxall AB, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine (Lond) 2(6):917–927

    Article  Google Scholar 

  • Bradfield SJ, Kumar P, White JC et al (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:28–137

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD et al (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag 30(3):504–520

    Article  CAS  PubMed  Google Scholar 

  • Cañas JE, Long M, Nations S et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931

    Article  PubMed  Google Scholar 

  • Chen CY, Jafvert CT (2010) Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water. Environ Sci Technol 44(17):6674–6679

    Article  CAS  PubMed  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5(2):851–873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corredor E, Risueno MC, Testillano PS (2010) Carbon–iron magnetic nanoparticles for agronomic use in plants: promising but still a long way to go. Plant Signal Behav 5:1295–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S et al (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163

    Article  CAS  PubMed  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211(1):112–125

    Article  PubMed  CAS  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT et al (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28(6):1191–1199

    Article  CAS  PubMed  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y et al (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47(21):12539–12547

    Google Scholar 

  • Delay M, Frimmel FH (2012) Nanoparticles in aquatic systems. Anal Bioanal Chem 402(2):583–592

    Article  CAS  PubMed  Google Scholar 

  • Deng YQ, White JC, Xing BS (2014) Interactions between engineered nanomaterials and agricultural crops: implications for food safety. J Zhejiang Univ Sci A 15(8):552–572

    Article  CAS  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72(3):313–327

    Article  CAS  PubMed  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M et al (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91–91

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW et al (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24(1):119–129

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Bindraban P, McLean JE et al (2017) Methods for rapid testing of plant and soil nutrients. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Cham, pp 1–43

    Google Scholar 

  • Dionysiou DD (2004) Environmental applications and implications of nanotechnology and nanomaterials. J Environ Eng 130(7):723–724

    Article  CAS  Google Scholar 

  • Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    Article  CAS  PubMed  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR et al (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Fajardo C, Ortíz LT, Rodríguez-Membibre ML et al (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86(8):802–808

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879):1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Fang T, Watson JL, Goodman J et al (2013) Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads? Microbiol Res 168(2):91–98

    Article  CAS  PubMed  Google Scholar 

  • Fernández V, Ebert G (2005) Foliar iron fertilization: a critical review. J Plant Nutr 28(12):2113–2124

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I et al (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8(12):e84441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fulekar MH (2010) Nanotechnology: importance and applications. IK International, New Delhi

    Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45(4):1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652

    CAS  PubMed  Google Scholar 

  • Ghosh PS, Kim CK, Han G et al (2008) Efficient gene delivery vectors by tuning the surface charge density of amino acid–functionalized gold nanoparticles. ACS Nano 2(11):2213–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh M, Chakraborty A, Bandyopadhyay M et al (2011) Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater 197:327–336

    Article  CAS  PubMed  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW et al (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119(1):608–619

    Article  CAS  PubMed  Google Scholar 

  • Haghighi M, da Silva JAT (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 17(4):201–208

    Article  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Cornelis G, Fernandes T et al (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31(1):15–31

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Zhang Z, Rui Y et al (2016) Effect of different nanoparticles on seed germination and seedling growth in rice. In: 2nd annual international conference on advanced material engineering (AME 2016), Wuhan, 15–17 Apr 2016

    Google Scholar 

  • He S, Feng Y, Ren H et al (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11(8):1408–1417

    Article  CAS  Google Scholar 

  • Hong J, Peralta-Videa JR, Rico C et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Rico CM, Zhao L et al (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17(1):177–185

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT et al (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875. https://doi.org/10.1155/2012/872875

    Article  CAS  Google Scholar 

  • Hullmann A (2007) Measuring and assessing the development of nanotechnology. Scientometrics 70(3):739–758

    Article  Google Scholar 

  • Iannone MF, Groppa MD, de Sousa ME et al (2016) Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131:77–88

    Article  CAS  Google Scholar 

  • Ibrahim RK, Hayyan M, AlSaadi MA et al (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut R 23(14):13754–13788

    Article  CAS  Google Scholar 

  • Jakubus A, Paszkiewicz M, Stepnowski P (2017) Carbon nanotubes application in the extraction techniques of pesticides: a review. Crit Rev Anal Chem 47(1):76–91

    Article  CAS  PubMed  Google Scholar 

  • Jalali M, Ghanati F, Modarres-Sanavi AM et al (2017) Physiological effects of repeated foliar application of magnetite nanoparticles on maize plants. J Agron Crop Sci 203(6):593–602

    Article  CAS  Google Scholar 

  • Jeyasubramanian K, Thoppey UUG, Hikku GS et al (2016) Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Adv 6(19):15451–15459

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  CAS  Google Scholar 

  • Jiang Y, Hua Z, Zhao Y et al (2014) The effect of carbon nanotubes on rice seed germination and root growth. In: Proceedings of the 2012 international conference on applied biotechnology (ICAB 2012). Springer, Berlin, Heidelberg, pp 1207–1212

    Chapter  Google Scholar 

  • Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8(2):452–458

    Article  CAS  PubMed  Google Scholar 

  • Juarez-Maldonado A, Ortega-Ortíz H, Pérez-Labrada F et al (2016) Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J Appl Bot Food Qual 89:183–189. https://doi.org/10.5073/JABFQ.2016.089.023

    Article  CAS  Google Scholar 

  • Juhel G, Batisse E, Hugues Q et al (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105(3):328–336

    Article  CAS  PubMed  Google Scholar 

  • Jyothi TV, Hebsur NS (2017) Effect of nanofertilizers on growth and yield of selected cereals—a review. Agric Rev 38(2):112–120

    Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P et al (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 7(3):70–77

    Article  CAS  PubMed  Google Scholar 

  • Khan NS, Dixit AK, Mehta R (2016) Nanoparticle toxicity in water, soil, microbes, plant and animals. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 2. Springer International Publishing, Cham, pp 277–309

    Chapter  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions. Proc Natl Acad Sci U S A 108(2011):1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Ko KS, Kong IC (2014) Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation. Appl Microbiol Biotechnol 98(7):3295–3303

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari A, Yadav SK (2014) Nanotechnology in agri-food sector. Crit Rev Food Sci 54(8):975–984

    Article  CAS  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5(16):7965–7973

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Chen J, Irin F et al (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619

    Article  CAS  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA et al (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6(1):6707

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Pinault M, Czarny B et al (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163

    Article  PubMed  CAS  Google Scholar 

  • Le Van N, Ma C, Shang J et al (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144(1):661–670

    Article  PubMed  CAS  Google Scholar 

  • Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38(19):5164–5169

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, An YJ, Yoon H et al (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499

    Article  CAS  PubMed  Google Scholar 

  • Levard C, Hotze EM, Lowry GV et al (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hu J, Ma C et al (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159(1):326–334

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514(1):131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chen B, Wang Q et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Lucena JJ, Hernandez-Apaolaza L (2017) Iron nutrition in plants: an overview. Plant and Soil 418(1-2):1–4

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, He X et al (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, He X, Zhang P et al (2017) Xylem and phloem based transport of CeO2 nanoparticles in hydroponic cucumber plants. Environ Sci Technol 51(9):5215–5221

    Article  CAS  PubMed  Google Scholar 

  • Markus AA, Parsons JR, Roex EWM et al (2016) Modelling the transport of engineered metallic nanoparticles in the river Rhine. Water Res 91:214–224

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (2011) Mineral nutrition of higher plants, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832. https://doi.org/10.3389/fpls.2017.00832

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Ballesta MC, Zapata L, Chalbi N et al (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnology 14(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444(7117):267–269

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Argüello B, Vera-Reyes I, Mendoza-Mendoza E et al (2016) Promoción del crecimiento en plantas de Capsicum annuum por nanopartículas de óxido de zinc. Nova Scientia 8(17):140–156

    Article  Google Scholar 

  • Miralles P, Johnson E, Church TL et al (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9(77):3514–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Mondal A, Basu R, Das S et al (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519

    Article  CAS  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165

    Article  Google Scholar 

  • Monreal CM, DeRosa M, Mallubhotla SC et al (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52(3):423–437

    Article  CAS  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Intl J Agric Crop Sci 5(19):2229

    Google Scholar 

  • Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  PubMed  Google Scholar 

  • Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5(2):081–089

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  PubMed  CAS  Google Scholar 

  • Pandey AC, Sanjay S, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5(6):488–497

    Article  CAS  Google Scholar 

  • Paul EA (2014) Soil microbiology, ecology and biochemistry, 4th edn. Academic Press, Waltham

    Google Scholar 

  • Peijnenburg WJ, Baalousha M, Chen J et al (2015) A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol 45(19):2084–2134

    Article  CAS  Google Scholar 

  • Peng C, Duan D, Xu C et al (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107

    Article  CAS  PubMed  Google Scholar 

  • Perlatti B, de Souza Bergo PL, Fernandes JB et al (2013) Polymeric nanoparticle–based insecticides: a controlled release purpose for agrochemicals. In: Insecticides—development of safer and more effective technologies. InTech, Rijeka

    Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227

    Article  CAS  PubMed  Google Scholar 

  • Petersen EJ, Zhang L, Mattison NT et al (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45(23):9837–9856

    Article  CAS  PubMed  Google Scholar 

  • Pikaar I, Matassa S, Rabaey K et al (2017) The urgent need to re-engineer nitrogen-efficient food production for the planet. DNC2017 position paper. Dresden: UNU-FLORES

    Google Scholar 

  • Pinedo-Guerrero ZH, Hernández-Fuentes AD, Ortega-Ortiz H et al (2017) Cu nanoparticles in hydrogels of chitosan–PVA affects the characteristics of post-harvest and bioactive compounds of jalapeño pepper. Molecules 22(6):926

    Article  CAS  PubMed Central  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ et al (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 155:169

    Google Scholar 

  • Praetorius A, Arvidsson R, Molander S et al (2013) Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles. Environ Sci Processes Impacts 15(1):161–168

    Article  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 109(37):E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian H, Peng X, Han X et al (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1956

    Article  CAS  Google Scholar 

  • Quiñones JP, Mardare CC, Hassel AW et al (2017) Self-assembled cellulose particles for agrochemical applications. Eur Polym J 93:706–716. https://doi.org/10.1016/j.eurpolymj.2017.02.023

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S et al (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Rao DP, Srivastava A (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3(5):502–504

    Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3(2):467–473

    CAS  Google Scholar 

  • Razzaq A, Ammara R, Jhanzab HM et al (2015) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 1:55–58

    Google Scholar 

  • Rehman HU, Aziz T, Farooq M (2012) Zinc nutrition in rice production systems: a review. Plant Soil 361(1–2):203–226

    Article  CAS  Google Scholar 

  • Ren HX, Liu L, Liu C et al (2011) Physiological investigation of magnetic iron oxide nanoparticles towards Chinese mung bean. J Biomed Nanotechnol 7(5):677–684

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Lee SC, Rubenecia R et al (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62(40):9669–9675

    Article  CAS  PubMed  Google Scholar 

  • Riding MJ, Martin FL, Jones KC et al (2015) Carbon nanomaterials in clean and contaminated soils: environmental implications and applications. Soil 1(1):1

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF et al (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    Article  CAS  PubMed  Google Scholar 

  • Rui M, Ma C, Hao Y et al (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815. https://doi.org/10.3389/fpls.2016.00815

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L et al (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15(1):33

    Article  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:925494. https://doi.org/10.1155/2014/925494

    Article  CAS  Google Scholar 

  • Saharan V, Pal A (2016) Current and future prospects of chitosan-based nanomaterials in plant protection and growth. In: Saharan V, Pal A (eds) Chitosan based nanomaterials in plant growth and protection. Springer India, New Delhi, pp 43–48

    Google Scholar 

  • Sajid M, Ilyas M, Basheer C et al (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res Int 22(6):4122–4143

    Article  PubMed  Google Scholar 

  • Schwabe F, Schulin R, Limbach LK et al (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512–520

    Article  CAS  PubMed  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15(2):22–44

    Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. Nano Impact 1(1):9–12

    Google Scholar 

  • Servin A, Elmer W, Mukherjee A et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):92

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148

    Article  CAS  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12(1):5

    Article  CAS  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB et al (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6(7):983–990

    Article  CAS  Google Scholar 

  • Shiva V (2016) The violence of the green revolution: third world agriculture, ecology, and politics. University Press of Kentucky, Lexington

    Google Scholar 

  • Shrestha B, Anderson TA, Acosta-Martinez V et al (2015) The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere. Ecotoxicol Environ Saf 116(1):143–149

    Article  CAS  PubMed  Google Scholar 

  • Shyla KK, Natarajan N (2014) Customizing zinc oxide, silver and titanium dioxide nanoparticles for enhancing groundnut seed quality. Indian J Sci Technol 7(9):1376–1381

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M et al (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 19–35

    Google Scholar 

  • Snapp S, Pound B (eds) (2017) Agricultural systems: agroecology and rural innovation for development: agroecology and rural innovation for development, 2nd edn. Academic Press, London

    Google Scholar 

  • Soenen SJ, Parak WJ, Rejman J et al (2015) (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115(5):2109–2135

    Article  CAS  PubMed  Google Scholar 

  • Srilatha B (2011) Nanotechnology in agriculture. J Nanomed Nanotechnol 2(7):5

    Google Scholar 

  • Srivastava P, Singh R, Tripathi S et al (2016) An urgent need for sustainable thinking in agriculture—an Indian scenario. Ecol Indic 67:611–622

    Article  Google Scholar 

  • Srivastava AK, Dev A, Karmakar S (2017) Nanosensors for food and agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 5. Springer International Publishing, Cham, pp 41–79

    Chapter  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour Technol 121(1):432–440

    Article  CAS  PubMed  Google Scholar 

  • Subbaiah LV, Prasad TNVKV, Krishna TG et al (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J Agric Food Chem 64(19):3778–3788

    Article  CAS  PubMed  Google Scholar 

  • Suliman Y, Omar A, Ali D et al (2015) Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol 30(2):149–160

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H et al (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):57–262

    Article  CAS  Google Scholar 

  • Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189(1):556–563

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Vert G (2013) Iron transport in plants: better be safe than sorry. Curr Opin Plant Biol 16(1):322–327

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Cendejas LV et al (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591

    Article  CAS  Google Scholar 

  • Tolaymat T, Genaidy A, Abdelraheem W et al (2017) The effects of metallic engineered nanoparticles upon plant systems: an analytic examination of scientific evidence. Sci Total Environ 579(1):93–106

    Article  CAS  PubMed  Google Scholar 

  • Tomberlin JK, Van Huis A, Benbow ME et al (2015) Protecting the environment through insect farming as a means to produce protein for use as livestock, poultry, and aquaculture feed. J Insects Food Feed 1(4):307–309

    Article  Google Scholar 

  • Tong Z, Bischoff M, Nies L (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41(8):2985–2991

    Article  CAS  PubMed  Google Scholar 

  • Tourinho PS, Van Gestel CA, Lofts S et al (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Kapri S, Datta A et al (2016) Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant. RSC Adv 6(50):43864–43873

    Article  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchio G, Galeone A, Brunetti V et al (2012) Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine 8(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Villagarcia H, Dervishi E, de Silva K et al (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15):2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Vithanage M, Seneviratne M, Ahmad M et al (2017) Contrasting effects of engineered carbon nanotubes on plants: a review. Environ Geochem Health:1–19. https://doi.org/10.1007/s10653-017-9957-y

    Article  CAS  PubMed  Google Scholar 

  • Volova TG, Zhila NO, Vinogradova ON et al (2016) Constructing herbicide metribuzin sustained-release formulations based on the natural polymer poly-3-hydroxybutyrate as a degradable matrix. J Environ Sci Health B 51(2):113–125

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xie X, Zhao J et al (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Menzies NW, Lombi E et al (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47(23):13822–13830

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu H, Zhang Y et al (2015) The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 34(3):554–561

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Liu X, Shi Z et al (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants: a soil microcosm experiment. Chemosphere 147:88–97

    Article  CAS  PubMed  Google Scholar 

  • Watson JL, Fang T, Dimpka CO et al (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28(1):101–112

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Shuman L (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14(1):49–82

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  PubMed  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Zeng GM, Huang DL et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Quensen J, Mathieu J et al (2014) Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Res 48:317–325

    Article  CAS  PubMed  Google Scholar 

  • Yasmeen F, Raja NI, Razzaq A et al (2017) Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim Biophys Acta 1865(1):28–42

    Article  CAS  Google Scholar 

  • Yin L, Colman BP, McGill BM et al (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):e47674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Zhang Z, Wang X et al (2017) Novel Impacts of functionalized multi-walled carbon nanotubes in plants: promotion of nodulation and nitrogenase activity in rhizobium–legume system. Nanoscale 9:9921–9937. https://doi.org/10.1039/C7NR01948C

    Article  CAS  PubMed  Google Scholar 

  • Zhai G, Walters KS, Peate DW et al (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Shao T, Karanfil T (2011) The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes. Water Res 45(3):1378–1386

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2015) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Yue M, Zheng X et al (2017) Physiological effects of single-and multi-walled carbon nanotubes on rice seedlings. IEEE Trans Nanobioscience 16(7):563–570. https://doi.org/10.1109/TNB.2017.2715359

    Article  PubMed  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA et al (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Ma C, White JC et al (2017) Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon 114(1):661–670

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ et al (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717

    Article  CAS  PubMed  Google Scholar 

  • Zuverza-Mena N, Medina-Velo IA, Barrios AC et al (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17(10):1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W et al (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses—a review. Plant Physiol Biochem 110:236–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E. Vázquez-Nuñez thanks the Universidad de Guanajuato for the support he has received, B.V. Furlong and AFLI Institute for the technical support. Méndez-Argüello and Vera-Reyes thank CONACYT-Mexico, for the postdoctoral fellowship (230282) and the research fellow project CONACYT-CIQA (Project 1333), I. V.-R., B. M.-A. and R.H. L.-S. wish to acknowledge for the financial support through the project number 268 from Fronteras de la Ciencia-CONACYT (Mexico).

Competing interests The authors declare that they have not competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Vázquez-Núñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vera-Reyes, I., Vázquez-Núñez, E., Lira-Saldivar, R.H., Méndez-Argüello, B. (2018). Effects of Nanoparticles on Germination, Growth, and Plant Crop Development. In: López-Valdez, F., Fernández-Luqueño, F. (eds) Agricultural Nanobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-96719-6_5

Download citation

Publish with us

Policies and ethics