Skip to main content

Influence of Race, Gender, Age, and Diabetes on Blood Flow

  • Reference work entry
  • First Online:
Textbook of Aging Skin
  • 254 Accesses

Abstract

While the circulation is controlled by local (metabolic) and neurogenic control, it is modulated by a number of factors. Estrogen, which varies during the normal menstrual cycle, causes circulation in the skin to peak near ovulation. With birth control pills, this change is abolished as it is with menopause. Other conditions like diabetes not only alter circulation but lead to endothelial dysfunction and numerous secondary diseases like heart disease, kidney failure, and retinopathy. Skin circulation in people with diabetes can be as little as one-third normal. This predisposes skin damage and burns. One of the principal factors leading to diabetes-related endothelial cell dysfunction is cellular inflammation. This can be caused by high-fat diets, obesity, cigarette smoking, and a generally poor diet. Some races are more susceptible to endothelial cell damage. A thrifty gene found in all Asians causes cellular inflammation and reduced endothelial response with even a single high-fat meal. Aging causes a natural senescence of the skin circulation and is partly due to increased free radicals in the body causing endothelial dysfunction. Thus all of these factors are important in understanding the circulation in the skin in man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Charkoudian N, Joyner MJ. Physiologic considerations for exercise performance in women. Clin Chest Med. 2004;25(2):247–55.

    Article  PubMed  Google Scholar 

  2. Groupe suisse pour l’étude des trouvailles monétaires. Colloque international (3rd: 2000: Bern Switzerland), et al. Circulation monétaire régionale et supra-régionale: actes du troisième colloque international du Groupe suisse pour l’étude des trouvailles monétaires (Berne, 3-4 mars 2000) = Regionaler und überregionaler Geldumlauf: Sitzungsbericht des dritten internationalen Kolloquiums der Schweizerischen Arbeitsgemeinschaft für Fundmünzen (Bern, 3.-4. März 2000). Etudes de numismatique et d’histoire monétaire. 2002, Lausanne: Editions du Zèbre. 296 p., 6 leaves of plates.

    Google Scholar 

  3. Charkoudian N, Johnson JM. Altered reflex control of cutaneous circulation by female sex steroids is independent of prostaglandins. Am J Physiol. 1999;276(5 Pt 2):H1634–40.

    CAS  PubMed  Google Scholar 

  4. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol (1985). 2010;109(4):1221–8.

    Article  Google Scholar 

  5. Petrofsky J, Al Malty A, Suh HJ. Isometric endurance, body and skin temperature and limb and skin blood flow during the menstrual cycle. Med Sci Monit. 2007;13(3):CR111–7.

    PubMed  Google Scholar 

  6. Cankar K, Finderle Z, Strucl M. Gender differences in cutaneous laser doppler flow response to local direct and contralateral cooling. J Vasc Res. 2000;37(3):183–8.

    Article  CAS  PubMed  Google Scholar 

  7. Lee H, et al. Higher sweating rate and skin blood flow during the luteal phase of the menstrual cycle. Tohoku J Exp Med. 2014;234(2):117–22.

    Article  PubMed  Google Scholar 

  8. Bungum L, et al. Laser doppler-recorded reactive hyperaemia in the forearm skin during the menstrual cycle. Br J Obstet Gynaecol. 1996;103(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  9. Agner T, Damm P, Skouby SO. Menstrual cycle and skin reactivity. J Am Acad Dermatol. 1991;24(4):566–70.

    Article  CAS  PubMed  Google Scholar 

  10. Kemmett D. Premenstrual exacerbation of atopic dermatitis. Br J Dermatol. 1989;120(5):715.

    Article  CAS  PubMed  Google Scholar 

  11. Guo X, et al. Estrogen induces vascular wall dilation: mediation through kinase signaling to nitric oxide and estrogen receptors alpha and beta. J Biol Chem. 2005;280(20):19704–10.

    Article  CAS  PubMed  Google Scholar 

  12. Malty AM, Petrofsky J. The effect of electrical stimulation on a normal skin blood flow in active young and older adults. Med Sci Monit. 2007;13(4):CR147–55.

    PubMed  Google Scholar 

  13. Petrofsky J, et al. Effects of contrast baths on skin blood flow on the dorsal and plantar foot in people with type 2 diabetes and age-matched controls. Physiother Theory Pract. 2007;23(4):189–97.

    Article  PubMed  Google Scholar 

  14. Petrofsky JS, et al. The influence of alterations in room temperature on skin blood flow during contrast baths in patients with diabetes. Med Sci Monit. 2006;12(7):CR290–5.

    PubMed  Google Scholar 

  15. Arnal JF, et al. Understanding the controversy about hormonal replacement therapy: insights from estrogen effects on experimental and clinical atherosclerosis. Arch Mal Coeur Vaiss. 2007;100(6–7):554–62.

    PubMed  Google Scholar 

  16. Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  17. Venkov CD, Rankin AB, Vaughan DE. Identification of authentic estrogen receptor in cultured endothelial cells. A potential mechanism for steroid hormone regulation of endothelial function. Circulation. 1996;94(4):727–33.

    Article  CAS  PubMed  Google Scholar 

  18. Green S, et al. Cloning of the human oestrogen receptor cDNA. J Steroid Biochem. 1986;24(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  19. Walker VR, Korach KS. Estrogen receptor knockout mice as a model for endocrine research. ILAR J. 2004;45(4):455–61.

    Article  CAS  PubMed  Google Scholar 

  20. Foresta C, et al. Oestrogen stimulates endothelial progenitor cells via oestrogen receptor-alpha. Clin Endocrinol (Oxf). 2007;67(4):520–5.

    CAS  Google Scholar 

  21. Hamada H, et al. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation. 2006;114(21):2261–70.

    Article  CAS  PubMed  Google Scholar 

  22. Iwakura A, et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation. 2003;108(25):3115–21.

    Article  CAS  PubMed  Google Scholar 

  23. Strehlow K, et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation. 2003;107(24):3059–65.

    Article  CAS  PubMed  Google Scholar 

  24. Assmus B, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res. 2003;92(9):1049–55.

    Article  CAS  PubMed  Google Scholar 

  25. Dimmeler S, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest. 2001;108(3):391–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Collado B, et al. Vasoactive intestinal peptide increases vascular endothelial growth factor expression and neuroendocrine differentiation in human prostate cancer LNCaP cells. Regul Pept. 2004;119(1-2):69–75.

    Article  CAS  PubMed  Google Scholar 

  27. Ceradini DJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  28. Crescioli C, et al. Expression of functional estrogen receptors in human fetal male external genitalia. J Clin Endocrinol Metab. 2003;88(4):1815–24.

    Article  CAS  PubMed  Google Scholar 

  29. Dietrich W, et al. Expression of estrogen receptors in human corpus cavernosum and male urethra. J Histochem Cytochem. 2004;52(3):355–60.

    Article  CAS  PubMed  Google Scholar 

  30. Goyal HO, et al. Role of estrogen in induction of penile dysmorphogenesis: a review. Reproduction. 2007;134(2):199–208.

    Article  CAS  PubMed  Google Scholar 

  31. Mowa CN, et al. Estrogen enhances wound healing in the penis of rats. Biomed Res. 2008;29(5):267–70.

    Article  CAS  PubMed  Google Scholar 

  32. Nissen NN, et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152(6):1445–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lahm T, et al. The effects of estrogen on pulmonary artery vasoreactivity and hypoxic pulmonary vasoconstriction: potential new clinical implications for an old hormone. Crit Care Med. 2008;36(7):2174–83.

    Article  CAS  PubMed  Google Scholar 

  34. English KM, et al. Gender differences in the vasomotor effects of different steroid hormones in rat pulmonary and coronary arteries. Horm Metab Res. 2001;33(11):645–52.

    Article  CAS  PubMed  Google Scholar 

  35. McLaughlin VV, McGoon MD. Pulmonary arterial hypertension. Circulation. 2006;114(13):1417–31.

    Article  PubMed  Google Scholar 

  36. Karakitsos D, et al. Androgen deficiency and endothelial dysfunction in men with end-stage kidney disease receiving maintenance hemodialysis. Am J Nephrol. 2006;26(6):536–43.

    Article  CAS  PubMed  Google Scholar 

  37. Sokolnicki LA, Khosla S, Charkoudian N. Effects of testosterone and estradiol on cutaneous vasodilation during local warming in older men. Am J Physiol Endocrinol Metab. 2007;293(5):E1426–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kenney WL, et al. Decreased active vasodilator sensitivity in aged skin. Am J Physiol. 1997;272(4 Pt 2):H1609–14.

    CAS  PubMed  Google Scholar 

  39. Jankovec Z, et al. The influence of insulin pump treatment on metabolic syndrome parameters in type 2 diabetes mellitus. Wien Klin Wochenschr. 2009;121(13–14):459–63.

    Article  CAS  PubMed  Google Scholar 

  40. Lacigova S, et al. Influence of cardiovascular autonomic neuropathy on atherogenesis and heart function in patients with type 1 diabetes. Diabetes Res Clin Pract. 2009;83(1):26–31.

    Article  PubMed  Google Scholar 

  41. Comi G, et al. Peripheral nerve abnormalities in newly-diagnosed diabetic children. Acta Diabetol Lat. 1986;23(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  42. Vinik AI, Freeman R, Erbas T. Diabetic autonomic neuropathy. Semin Neurol. 2003;23(4):365–72.

    Article  PubMed  Google Scholar 

  43. Pittenger G, Vinik A. Nerve growth factor and diabetic neuropathy. Exp Diabesity Res. 2003;4(4):271–85.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Colberg SR, et al. Cutaneous blood flow in type 2 diabetic individuals after an acute bout of maximal exercise. Diabetes Care. 2003;26(6):1883–8.

    Article  PubMed  Google Scholar 

  45. Maloney-Hinds C, et al. The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabetes Technol Ther. 2009;11(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  46. McLellan K, et al. The effects of skin moisture and subcutaneous fat thickness on the ability of the skin to dissipate heat in young and old subjects, with and without diabetes, at three environmental room temperatures. Med Eng Phys. 2009;31(2):165–72.

    Article  PubMed  Google Scholar 

  47. Maloney-Hinds C, Petrofsky JS, Zimmerman G. The effect of 30 Hz vs. 50 Hz passive vibration and duration of vibration on skin blood flow in the arm. Med Sci Monit. 2008;14(3):CR112–6.

    PubMed  Google Scholar 

  48. Alemzadeh R, et al. Continuous subcutaneous insulin infusion and multiple dose of insulin regimen display similar patterns of blood glucose excursions in pediatric type 1 diabetes. Diabetes Technol Ther. 2005;7(4):587–96.

    Article  CAS  PubMed  Google Scholar 

  49. Peter R, et al. Postprandial glucose – a potential therapeutic target to reduce cardiovascular mortality. Curr Vasc Pharmacol. 2009;7(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  50. Petrofsky J, et al. The interrelationships between electrical stimulation, the environment surrounding the vascular endothelial cells of the skin, and the role of nitric oxide in mediating the blood flow response to electrical stimulation. Med Sci Monit. 2007;13(9):CR391–7.

    PubMed  Google Scholar 

  51. Lawson D, Petrofsky JS. A randomized control study on the effect of biphasic electrical stimulation in a warm room on skin blood flow and healing rates in chronic wounds of patients with and without diabetes. Med Sci Monit. 2007;13(6):CR258–63.

    PubMed  Google Scholar 

  52. Petrofsky JS, et al. Skin heat dissipation: the influence of diabetes, skin thickness, and subcutaneous fat thickness. Diabetes Technol Ther. 2008;10(6):487–93.

    Article  PubMed  Google Scholar 

  53. Langer A, et al. Detection of silent myocardial ischemia in diabetes mellitus. Am J Cardiol. 1991;67(13):1073–8.

    Article  CAS  PubMed  Google Scholar 

  54. Petrofsky J, Lee S, Cuneo M. Effects of aging and type 2 diabetes on resting and post occlusive hyperemia of the forearm; the impact of rosiglitazone. BMC Endocr Disord. 2005;5(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tabit CE, et al. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11(1):61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Potenza MA, et al. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem. 2009;16(1):94–112.

    Article  CAS  PubMed  Google Scholar 

  57. Toda N, Imamura T, Okamura T. Alteration of nitric oxide-mediated blood flow regulation in diabetes mellitus. Pharmacol Ther. 2010;127(3):189–209.

    Article  CAS  PubMed  Google Scholar 

  58. Druhan LJ, et al. Regulation of eNOS-derived superoxide by endogenous methylarginines. Biochemistry. 2008;47(27):7256–63.

    Article  CAS  PubMed  Google Scholar 

  59. Holowatz LA, Thompson CS, Kenney WL. L-Arginine supplementation or arginase inhibition augments reflex cutaneous vasodilatation in aged human skin. J Physiol. 2006;574(Pt 2):573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Loer CM, et al. Cuticle integrity and biogenic amine synthesis in caenorhabditis elegans require the cofactor tetrahydrobiopterin (BH4). Genetics. 2015;200:237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Wit C, Boettcher M, Schmidt VJ. Signaling across myoendothelial gap junctions – fact or fiction? Cell Commun Adhes. 2008;15(3):231–45.

    Article  PubMed  CAS  Google Scholar 

  62. Schmidt VJ, et al. Gap junctions synchronize vascular tone within the microcirculation. Pharmacol Rep. 2008;60(1):68–74.

    CAS  PubMed  Google Scholar 

  63. Gupta PK, et al. Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery. Eur J Pharmacol. 2008;591(1–3):171–6.

    Article  CAS  PubMed  Google Scholar 

  64. Triggle CR, et al. The endothelium in health and disease – a target for therapeutic intervention. J Smooth Muscle Res. 2003;39(6):249–67.

    Article  CAS  PubMed  Google Scholar 

  65. Sokolnicki LA, et al. Skin blood flow and nitric oxide during body heating in type 2 diabetes mellitus. J Appl Physiol (1985). 2009;106(2):566–70.

    Article  CAS  Google Scholar 

  66. Petrofsky J, et al. Effects of a 2-, 3- and 4-electrode stimulator design on current dispersion on the surface and into the limb during electrical stimulation in controls and patients with wounds. J Med Eng Technol. 2008;32(6):485–97.

    Article  CAS  PubMed  Google Scholar 

  67. Petrofsky J, et al. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds. J Med Eng Technol. 2008;32(5):371–84.

    Article  CAS  PubMed  Google Scholar 

  68. Antoniades C, Tousoulis D, Stefanadis C. Smoking in Asians: it doesn’t stop at vascular endothelium. Int J Cardiol. 2008;128(2):151–3.

    Article  PubMed  Google Scholar 

  69. Mata-Greenwood E, Chen DB. Racial differences in nitric oxide-dependent vasorelaxation. Reprod Sci. 2008;15(1):9–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yudkin JS, et al. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  71. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265(3):621–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dahlgren U, et al. Induction of the mucosal immune response. Curr Top Microbiol Immunol. 1989;146:155–60.

    CAS  PubMed  Google Scholar 

  73. Mahoney Jr DH, et al. Acquired immune deficiency, myelodysplasia, and acute nonlymphocytic leukemia associated with monosomy 7 and t(3;3) (q21;q26) in a child with Langerhans cell histiocytosis. Am J Pediatr Hematol Oncol. 1989;11(2):153–7.

    PubMed  Google Scholar 

  74. Yokota T, Hansson GK. Immunological mechanisms in atherosclerosis. J Intern Med. 1995;238(6):479–89.

    Article  CAS  PubMed  Google Scholar 

  75. Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41(10):1241–8.

    Article  CAS  PubMed  Google Scholar 

  76. Hotamisligil GS, et al. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994;91(11):4854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fichtlscherer S, et al. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation. 2000;102(9):1000–6.

    Article  CAS  PubMed  Google Scholar 

  78. Jager A, et al. Increased levels of soluble vascular cell adhesion molecule 1 are associated with risk of cardiovascular mortality in type 2 diabetes: the Hoorn study. Diabetes. 2000;49(3):485–91.

    Article  CAS  PubMed  Google Scholar 

  79. Ridker PM, et al. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet. 1998;351(9096):88–92.

    Article  CAS  PubMed  Google Scholar 

  80. Hwang SJ, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation. 1997;96(12):4219–25.

    Article  CAS  PubMed  Google Scholar 

  81. Thomas GN, et al. Smoking without exception adversely affects vascular structure and function in apparently healthy Chinese: implications in global atherosclerosis prevention. Int J Cardiol. 2008;128(2):172–7.

    Article  PubMed  Google Scholar 

  82. Davis JW, et al. Effects of tobacco and non-tobacco cigarette smoking on endothelium and platelets. Clin Pharmacol Ther. 1985;37(5):529–33.

    Article  CAS  PubMed  Google Scholar 

  83. Lam TH, et al. The relationship between fibrinogen and other coronary heart disease risk factors in a Chinese population. Atherosclerosis. 1999;143(2):405–13.

    Article  CAS  PubMed  Google Scholar 

  84. Vapaatalo H, Mervaala E. Clinically important factors influencing endothelial function. Med Sci Monit. 2001;7(5):1075–85.

    CAS  PubMed  Google Scholar 

  85. Li R, et al. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation. Free Radic Biol Med. 2009;46(6):775–82.

    Article  CAS  PubMed  Google Scholar 

  86. Fira-Mladinescu O, et al. The effects of chronic exposure to cigarette smoke on vasomotor endothelial function of guinea pig pulmonary arteries. Rev Med Chir Soc Med Nat Iasi. 2008;112(1):213–9.

    CAS  PubMed  Google Scholar 

  87. O’Toole TE, Conklin DJ, Bhatnagar A. Environmental risk factors for heart disease. Rev Environ Health. 2008;23(3):167–202.

    PubMed  Google Scholar 

  88. Petrofsky JS, et al. What is more damaging to vascular endothelial function: diabetes, age, high BMI, or all of the above? Med Sci Monit. 2013;19:257–63.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang SZ, Zhu SZ, el-Fakahany EE. Efficient coupling of m5 muscarinic acetylcholine receptors to activation of nitric oxide synthase. J Pharmacol Exp Ther. 1994;268(2):552–7.

    CAS  PubMed  Google Scholar 

  90. Harris MB, et al. Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J Biol Chem. 2001;276(19):16587–91.

    Article  CAS  PubMed  Google Scholar 

  91. McDaniel M, Paxson C, Waldfogel J. Racial disparities in childhood asthma in the United States: evidence from the National Health Interview Survey, 1997 to 2003. Pediatrics. 2006;117(5):e868–77.

    Article  PubMed  Google Scholar 

  92. McBean AM, et al. Differences in diabetes prevalence, incidence, and mortality among the elderly of four racial/ethnic groups: whites, blacks, hispanics, and asians. Diabetes Care. 2004;27(10):2317–24.

    Article  PubMed  Google Scholar 

  93. McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet. 1991;337(8738):382–6.

    Article  CAS  PubMed  Google Scholar 

  94. Androne AS, et al. Comparison of metabolic vasodilation in response to exercise and ischemia and endothelium-dependent flow-mediated dilation in African-American versus non-African-American patients with chronic heart failure. Am J Cardiol. 2006;97(5):685–9.

    Article  PubMed  Google Scholar 

  95. Kalinowski L, Dobrucki IT, Malinski T. Race-specific differences in endothelial function: predisposition of African Americans to vascular diseases. Circulation. 2004;109(21):2511–7.

    Article  PubMed  Google Scholar 

  96. Tai ES, et al. Differential effects of the C1431T and Pro12Ala PPARgamma gene variants on plasma lipids and diabetes risk in an Asian population. J Lipid Res. 2004;45(4):674–85.

    Article  CAS  PubMed  Google Scholar 

  97. Radha V, et al. Role of genetic polymorphism peroxisome proliferator-activated receptor-gamma2 Pro12Ala on ethnic susceptibility to diabetes in South-Asian and Caucasian subjects: evidence for heterogeneity. Diabetes Care. 2006;29(5):1046–51.

    Article  CAS  PubMed  Google Scholar 

  98. Murphy C, et al. Vascular dysfunction and reduced circulating endothelial progenitor cells in young healthy UK South Asian men. Arterioscler Thromb Vasc Biol. 2007;27(4):936–42.

    Article  CAS  PubMed  Google Scholar 

  99. Tsai WC, et al. Effects of oxidative stress on endothelial function after a high-fat meal. Clin Sci (Lond). 2004;106(3):315–9.

    Article  CAS  Google Scholar 

  100. Tripathy D, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52(12):2882–7.

    Article  CAS  PubMed  Google Scholar 

  101. Nappo F, et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol. 2002;39(7):1145–50.

    Article  CAS  PubMed  Google Scholar 

  102. Petrofsky J, et al. The effect of acute administration of vitamin D on micro vascular endothelial function in Caucasians and South Asian Indians. Med Sci Monit. 2013;19:641–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bui C, et al. Acute effect of a single high-fat meal on forearm blood flow, blood pressure and heart rate in healthy male Asians and Caucasians: a pilot study. Southeast Asian J Trop Med Public Health. 2010;41(2):490–500.

    PubMed  PubMed Central  Google Scholar 

  104. Watanabe H, et al. Influence of westernization of lifestyle on the progression of IMT in Japanese. J Atheroscler Thromb. 2004;11(6):330–4.

    Article  PubMed  Google Scholar 

  105. Weyer C, et al. Humoral markers of inflammation and endothelial dysfunction in relation to adiposity and in vivo insulin action in Pima Indians. Atherosclerosis. 2002;161(1):233–42.

    Article  CAS  PubMed  Google Scholar 

  106. Kim K, et al. Associations of visceral adiposity and exercise participation with C-reactive protein, insulin resistance, and endothelial dysfunction in Korean healthy adults. Metabolism. 2008;57(9):1181–9.

    Article  CAS  PubMed  Google Scholar 

  107. Yim J, et al. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians. Med Sci Monit. 2012;18(8):CR467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bolukbas C, et al. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect Dis. 2005;5:95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Droma Y, et al. Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in sherpas. High Alt Med Biol. 2006;7(3):209–20.

    Article  CAS  PubMed  Google Scholar 

  110. Periaswamy R, et al. Gender specific association of endothelial nitric oxide synthase gene (Glu298Asp) polymorphism with essential hypertension in a south Indian population. Clin Chim Acta. 2008;395(1–2):134–6.

    Article  CAS  PubMed  Google Scholar 

  111. Shoji M, et al. Positive association of endothelial nitric oxide synthase gene polymorphism with hypertension in northern Japan. Life Sci. 2000;66(26):2557–62.

    Article  CAS  PubMed  Google Scholar 

  112. Srivastava K, et al. Association of eNOS Glu298Asp gene polymorphism with essential hypertension in Asian Indians. Clin Chim Acta. 2008;387(1–2):80–3.

    Article  CAS  PubMed  Google Scholar 

  113. Petrofsky JS, et al. CoQ10 and endothelial function in Asians from Korea compared to Asians born in the United States and US born Caucasians. Med Sci Monit. 2013;19:339–46.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yim J, et al. Differences in endothelial function between Korean-Asians and Caucasians. Med Sci Monit. 2012;18(6):CR337–43.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Petrofsky JS, et al. Reduced endothelial function in the skin in southeast Asians compared to Caucasians. Med Sci Monit. 2012;18(1):CR1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fagard R, Thijs L, Amery A. Age and the hemodynamic response to posture and exercise. Am J Geriatr Cardiol. 1993;2(2):23–40.

    PubMed  Google Scholar 

  117. Cybulski G, Niewiadomski W. Influence of age on the immediate heart rate response to the active orthostatic test. J Physiol Pharmacol. 2003;54(1):65–80.

    CAS  PubMed  Google Scholar 

  118. Stein JH. Carotid intima-media thickness and vascular age: you are only as old as your arteries look. J Am Soc Echocardiogr. 2004;17(6):686–9.

    Article  PubMed  Google Scholar 

  119. Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics. 2014;41(9):485–95.

    Article  PubMed  Google Scholar 

  120. Stadler K, et al. Increased nitric oxide levels as an early sign of premature aging in diabetes. Free Radic Biol Med. 2003;35(10):1240–51.

    Article  CAS  PubMed  Google Scholar 

  121. Schutzer WE, Mader SL. Age-related changes in vascular adrenergic signaling: clinical and mechanistic implications. Ageing Res Rev. 2003;2(2):169–90.

    Article  CAS  PubMed  Google Scholar 

  122. Petrofsky J, et al. The effect of rosiglitazone on orthostatic tolerance during heat exposure in individuals with type II diabetes. Diabetes Technol Ther. 2007;9(4):377–86.

    Article  CAS  PubMed  Google Scholar 

  123. Wang M, Monticone RE, Lakatta EG. Proinflammation of aging central arteries: a mini-review. Gerontology. 2014;60(6):519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang M, Khazan B, Lakatta EG. Central arterial aging and angiotensin II signaling. Curr Hypertens Rev. 2010;6(4):266–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang M, et al. Proinflammation: the key to arterial aging. Trends Endocrinol Metab. 2014;25(2):72–9.

    Article  CAS  PubMed  Google Scholar 

  126. Wang M, Monticone RE, Lakatta EG. Arterial aging: a journey into subclinical arterial disease. Curr Opin Nephrol Hypertens. 2010;19(2):201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Go AS, et al. Executive summary: heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410.

    Article  PubMed  Google Scholar 

  128. Go AS, et al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.

    Article  PubMed  Google Scholar 

  129. Lakatta EG. The reality of aging viewed from the arterial wall. Artery Res. 2013;7(2):73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res. 2005;66(2):286–94.

    Article  CAS  PubMed  Google Scholar 

  131. Yepuri G, et al. Positive crosstalk between arginase-II and S6K1 in vascular endothelial inflammation and aging. Aging Cell. 2012;11(6):1005–16.

    Article  CAS  PubMed  Google Scholar 

  132. Wang M, et al. Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. Am J Pathol. 2005;167(5):1429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McCrann DJ, et al. Upregulation of Nox4 in the aging vasculature and its association with smooth muscle cell polyploidy. Cell Cycle. 2009;8(6):902–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang M, et al. Chronic matrix metalloproteinase inhibition retards age-associated arterial proinflammation and increase in blood pressure. Hypertension. 2012;60(2):459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gennaro G, et al. Role of p44/p42 MAP kinase in the age-dependent increase in vascular smooth muscle cell proliferation and neointimal formation. Arterioscler Thromb Vasc Biol. 2003;23(2):204–10.

    Article  CAS  PubMed  Google Scholar 

  136. Sadoun E, Reed MJ. Impaired angiogenesis in aging is associated with alterations in vessel density, matrix composition, inflammatory response, and growth factor expression. J Histochem Cytochem. 2003;51(9):1119–30.

    Article  CAS  PubMed  Google Scholar 

  137. Siebert J, et al. Stroke volume variability and heart rate power spectrum in relation to posture changes in healthy subjects. Med Sci Monit. 2004;10(2):MT31–7.

    PubMed  Google Scholar 

  138. Scremin G, Kenney WL. Aging and the skin blood flow response to the unloading of baroreceptors during heat and cold stress. J Appl Physiol (1985). 2004;96(3):1019–25.

    Article  Google Scholar 

  139. Ray CA, Monahan KD. Aging attenuates the vestibulosympathetic reflex in humans. Circulation. 2002;105(8):956–61.

    Article  PubMed  Google Scholar 

  140. Guyton AC, Harris JW. Pressoreceptor-autonomic oscillation; a probable cause of vasomotor waves. Am J Physiol. 1951;165(1):158–66.

    CAS  PubMed  Google Scholar 

  141. Franzoni F, et al. Effects of age and physical fitness on microcirculatory function. Clin Sci (Lond). 2004;106(3):329–35.

    Article  Google Scholar 

  142. Montero D, et al. Flow-mediated dilation in athletes: influence of aging. Med Sci Sports Exerc. 2014;46(11):2148–58.

    Article  PubMed  Google Scholar 

  143. Barton M. Aging and endothelin: determinants of disease. Life Sci. 2014;118(2):97–109.

    Article  CAS  PubMed  Google Scholar 

  144. Capell BC, Collins FS, Nabel EG. Mechanisms of cardiovascular disease in accelerated aging syndromes. Circ Res. 2007;101(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  145. Merideth MA, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008;358(6):592–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Franceschi C, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  147. Campia U, et al. The vascular endothelin system in obesity and type 2 diabetes: pathophysiology and therapeutic implications. Life Sci. 2014;118(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  148. Meyer MR, et al. Endothelin-1 but not angiotensin II contributes to functional aging in murine carotid arteries. Life Sci. 2014;118(2):213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Accurso V, Shamsuzzaman AS, Somers VK. Rhythms, rhymes, and reasons – spectral oscillations in neural cardiovascular control. Auton Neurosci. 2001;90(1–2):41–6.

    Article  CAS  PubMed  Google Scholar 

  150. Sagliocco L, et al. Amplitude loss of electrically and magnetically evoked sympathetic skin responses in early stages of type 1 (insulin-dependent) diabetes mellitus without signs of dysautonomia. Clin Auton Res. 1999;9(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  151. Ewing DJ, et al. Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia. 1991;34(3):182–5.

    Article  CAS  PubMed  Google Scholar 

  152. Agrawal A, Saran R, Khanna R. Management of orthostatic hypotension from autonomic dysfunction in diabetics on peritoneal dialysis. Perit Dial Int. 1999;19(5):415–7.

    CAS  PubMed  Google Scholar 

  153. Petrofsky JS, Besonis C, Rivera D, Schwab E, Lee S. Heat tolerance in patients with diabetes. J Appl Res Clin Exp Ther. 2003;3:28–34.

    Google Scholar 

  154. Stansberry KB, et al. Primary nociceptive afferents mediate the blood flow dysfunction in non-glabrous (hairy) skin of type 2 diabetes: a new model for the pathogenesis of microvascular dysfunction. Diabetes Care. 1999;22(9):1549–54.

    Article  CAS  PubMed  Google Scholar 

  155. Hsueh WA, Law RE. Cardiovascular risk continuum: implications of insulin resistance and diabetes. Am J Med. 1998;105(1A):4S–14.

    Article  CAS  PubMed  Google Scholar 

  156. Winer N, Sowers JR. Vascular compliance in diabetes. Curr Diab Rep. 2003;3(3):230–4.

    Article  PubMed  Google Scholar 

  157. Varsik P, et al. Is the spinal cord lesion rare in diabetes mellitus? Somatosensory evoked potentials and central conduction time in diabetes mellitus. Med Sci Monit. 2001;7(4):712–5.

    CAS  PubMed  Google Scholar 

  158. Petrofsky JS, Prowse M, Lohman E. The influence of ageing and diabetes on skin and subcutaneous fat thickness in different regions of the body. J Appl Res Clin Exp Ther. 2008;8:55–61.

    Google Scholar 

  159. Montero D, et al. Vascular smooth muscle function in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetologia. 2013;56(10):2122–33.

    Article  CAS  PubMed  Google Scholar 

  160. Petrofsky JS, Bweir S, Lee S, Libarona M. Rosiglitazone improves age related reductions in forearm resting flows and endothelial dysfunction observed in type 2 diabetes. Diabetes. 2004;53:A141.

    Article  Google Scholar 

  161. Puig T, et al. Some determinants of body weight, subcutaneous fat, and fat distribution in 25–64 year old Swiss urban men and woman. Soz Praventivmed. 1990;35(6):193–200.

    Article  CAS  PubMed  Google Scholar 

  162. Schwartz RS, et al. Body fat distribution in healthy young and older men. J Gerontol. 1990;45(6):M181–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrold Scott Petrofsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Petrofsky, J.S. (2017). Influence of Race, Gender, Age, and Diabetes on Blood Flow. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics