Skip to main content

Control of Skin Blood Flow

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

The circulation of the skin and of other organs is the center of aging and many diseases in the body. The heart of the circulation is the one-cell thick barrier that lines the arteries, capillaries, and veins in the body: the vascular endothelial cell. The smooth muscle surrounding arteries and veins will not, in itself, contract or relax in response to local stimuli and the autonomic nervous system. The processing of environmental, humeral stimuli and the response to sympathetic vasodilators and constrictors in the vascular endothelial cell. These cells respond to heat, osmolarity, pressure, shear forces in arteries, chemokines and cytokines like histamine and bradykinin, and neurotransmitters such as acetylcholine and epinephrine and norepinephrine. Vasodilation and vasoconstriction are accomplished by the release of fat-soluble substances that diffuse from the endothelial cell into the surrounding smooth muscle and either block calcium permeability or enhance it to adjust the contractile state of the smooth muscle. There are also electrical connections between the endothelial cells and the smooth muscle forming electronic synapses. There is some evidence that the main vasodilator substance, nitric oxide, is even released by parasympathetic neurons in the skin. This chapter deals with the control of skin circulation and the various mediators that alter circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Johnson JM, Minson CT, Kellogg Jr DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol. 2014;4(1):33–89.

    PubMed  Google Scholar 

  2. Sukriti S, et al. Mechanisms regulating endothelial permeability. Pulm Circ. 2014;4(4):535–51.

    PubMed Central  PubMed  Google Scholar 

  3. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86(1):279–367.

    CAS  PubMed  Google Scholar 

  4. Chavez A, Smith M, Mehta D. New insights into the regulation of vascular permeability. Int Rev Cell Mol Biol. 2011;290:205–48.

    CAS  PubMed  Google Scholar 

  5. Esser S, et al. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci. 1998;111(Pt 13):1853–65.

    CAS  PubMed  Google Scholar 

  6. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol. 2002;39(4–5):225–37.

    CAS  Google Scholar 

  7. Farage MA, Miller KW, Ledger WJ. Determining the cause of vulvovaginal symptoms. Obstet Gynecol Surv. 2008;63(7):445–64.

    PubMed  Google Scholar 

  8. Koroxenidis GT, Shepherd JT, Marshall RJ. Cardiovascular response to acute heat stress. J Appl Physiol. 1961;16:869–72.

    CAS  PubMed  Google Scholar 

  9. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol (1985). 2010;109(4):1221–8.

    Google Scholar 

  10. Whitney RJ. The measurement of volume changes in human limbs. J Physiol. 1953;121(1):1–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Williams CA, Mudd JG, Lind AR. The forearm blood flow during intermittent hand-grip isometric exercise. Circ Res. 1981;48(6 Pt 2):I110–7.

    CAS  PubMed  Google Scholar 

  12. Lind AR, et al. Influence of posture on isometric fatigue. J Appl Physiol Respir Environ Exerc Physiol. 1978;45(2):270–4.

    CAS  PubMed  Google Scholar 

  13. Lind AR, Williams CA. Changes in the forearm blood flow following brief isometric hand-grip contractions at different tensions [proceedings]. J Physiol. 1977;272(1):97P–8.

    CAS  PubMed  Google Scholar 

  14. Edholm OG, Fox RH, Macpherson RK. Vasomotor control of the cutaneous blood vessels in the human forearm. J Physiol. 1957;139(3):455–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Hagg A, et al. Increase of plasma renin activity at renal blood flow estimations with the xenon133 wash-out technique in patients with renal artery stenosis. Clin Physiol. 1987;7(1):55–61.

    CAS  PubMed  Google Scholar 

  16. Kostuik JP, et al. The measurement of skin blood flow in peripheral vascular disease by epicutaneous application of Xenon133. J Bone Joint Surg Am. 1976;58(6):833–7.

    CAS  PubMed  Google Scholar 

  17. James GW, Paul MH, Wessel HU. Thermal dilution: instrumentation with thermistors. J Appl Physiol. 1965;20(3):547–52.

    CAS  PubMed  Google Scholar 

  18. Petrofsky JS. In vivo measurement of brain blood flow in the cat. IEEE Trans Biomed Eng. 1979;26(8):441–5.

    CAS  PubMed  Google Scholar 

  19. Petrofsky JS. Resting blood flow in the skin: does it exist, and what is the influence of temperature, aging, and diabetes? J Diabetes Sci Technol. 2012;6(3):674–85.

    PubMed Central  PubMed  Google Scholar 

  20. Oberg PA. Laser-Doppler flowmetry. Crit Rev Biomed Eng. 1990;18(2):125–63.

    CAS  PubMed  Google Scholar 

  21. Lotter O. et al. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model. Wound Repair Regen. 2015;23(1):132–6.

    Google Scholar 

  22. Mazhar A, et al. Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging. J Biomed Opt. 2014;19(8):086019.

    PubMed  Google Scholar 

  23. Ganapathy P, et al. Dual-imaging system for burn depth diagnosis. Burns. 2014;40(1):67–81.

    PubMed  Google Scholar 

  24. Nilsson GE, Tenland T, Oberg PA. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng. 1980;27(10):597–604.

    CAS  PubMed  Google Scholar 

  25. Lindblad LE, et al. Laser Doppler flow-meter assessment of iontophoretically applied norepinephrine on human finger skin circulation. J Invest Dermatol. 1986;87(5):634–6.

    CAS  PubMed  Google Scholar 

  26. Kellogg Jr DL, Johnson JM, Kosiba WA. Selective abolition of adrenergic vasoconstrictor responses in skin by local iontophoresis of bretylium. Am J Physiol. 1989;257(5 Pt 2):H1599–606.

    PubMed  Google Scholar 

  27. Dreyfuss C, et al. L-NAME iontophoresis: a tool to assess NO-mediated vasoreactivity during thermal hyperemic vasodilation in humans. J Cardiovasc Pharmacol. 2013;61(5):361–8.

    CAS  PubMed  Google Scholar 

  28. Fox RH, Edholm OG. Nervous control of the cutaneous circulation. Br Med Bull. 1963;19:110–4.

    CAS  PubMed  Google Scholar 

  29. Johnson JM, et al. Regulation of the cutaneous circulation. Fed Proc. 1986;45(13):2841–50.

    CAS  PubMed  Google Scholar 

  30. Charkoudian N, Johnson JM. Altered reflex control of cutaneous circulation by female sex steroids is independent of prostaglandins. Am J Physiol. 1999;276(5 Pt 2):H1634–40.

    CAS  PubMed  Google Scholar 

  31. Toda N, Okamura T. Recent advances in research on nitrergic nerve-mediated vasodilatation. Pflügers Arch. 2015;467(6):1165–78.

    Google Scholar 

  32. Lee TJ, Su C, Bevan JA. Nonsympathetic dilator innervation of cat cerebral arteries. Experientia. 1975;31(12):1424–6.

    CAS  PubMed  Google Scholar 

  33. Toda N, Okamura T. Cerebral blood flow regulation by nitric oxide in Alzheimer’s disease. J Alzheimers Dis. 2012;32(3):569–78.

    PubMed  Google Scholar 

  34. Toda N, Hayashi S. Responses of canine coronary arteries to transmural electrical stimulation and nicotine. Eur J Pharmacol. 1982;80(1):73–81.

    CAS  PubMed  Google Scholar 

  35. Shiraishi S, et al. Differences in adrenergic nerve and receptor function in dog internal thoracic, coronary and mesenteric arteries. Jpn J Pharmacol. 1994;66(4):481–8.

    CAS  PubMed  Google Scholar 

  36. Scott JA, McCormack DG. Nonadrenergic noncholinergic vasodilation of guinea pig pulmonary arteries is mediated by nitric oxide. Can J Physiol Pharmacol. 1999;77(2):89–95.

    CAS  PubMed  Google Scholar 

  37. Wang X, Cupples WA. Brown Norway rats show impaired nNOS-mediated information transfer in renal autoregulation. Can J Physiol Pharmacol. 2009;87(1):29–36.

    CAS  PubMed  Google Scholar 

  38. Lau KS, et al. nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle. Physiol Genomics. 2000;2(1):21–7.

    CAS  PubMed  Google Scholar 

  39. Johnson JM, Kellogg Jr DL. Local thermal control of the human cutaneous circulation. J Appl Physiol (1985). 2010;109(4):1229–38.

    Google Scholar 

  40. Maloney-Hinds C, et al. The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabetes Technol Ther. 2009;11(1):39–43.

    CAS  PubMed  Google Scholar 

  41. Petrofsky J, et al. The interrelationships between electrical stimulation, the environment surrounding the vascular endothelial cells of the skin, and the role of nitric oxide in mediating the blood flow response to electrical stimulation. Med Sci Monit. 2007;13(9):CR391–7.

    PubMed  Google Scholar 

  42. Okamura T, et al. Neurogenic vasodilatation of canine isolated small labial arteries. J Pharmacol Exp Ther. 1999;288(3):1031–6.

    CAS  PubMed  Google Scholar 

  43. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159.

    CAS  PubMed  Google Scholar 

  44. Del Pozzi AT, Hodges GJ. To reheat, or to not reheat: that is the question: the efficacy of a local reheating protocol on mechanisms of cutaneous vasodilatation. Microvasc Res. 2015;97:47–54.

    PubMed  Google Scholar 

  45. Farrell DM, Bishop VS. Permissive role for nitric oxide in active thermoregulatory vasodilation in rabbit ear. Am J Physiol. 1995;269(5 Pt 2):H1613–8.

    CAS  PubMed  Google Scholar 

  46. Kellogg Jr DL, et al. Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission. Circ Res. 1995;77(6):1222–8.

    CAS  PubMed  Google Scholar 

  47. Bennett LA, et al. Evidence for a role for vasoactive intestinal peptide in active vasodilatation in the cutaneous vasculature of humans. J Physiol. 2003;552(Pt 1):223–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Wilkins BW, et al. Vasoactive intestinal peptide fragment VIP10-28 and active vasodilation in human skin. J Appl Physiol (1985). 2005;99(6):2294–301.

    CAS  Google Scholar 

  49. Kellogg Jr DL, et al. Nitric oxide and cutaneous active vasodilation during heat stress in humans. J Appl Physiol (1985). 1998;85(3):824–9.

    CAS  Google Scholar 

  50. Shastry S, et al. Effects of nitric oxide synthase inhibition on cutaneous vasodilation during body heating in humans. J Appl Physiol (1985). 1998;85(3):830–4.

    CAS  Google Scholar 

  51. Taylor WF, Bishop VS. A role for nitric oxide in active thermoregulatory vasodilation. Am J Physiol. 1993;264(5 Pt 2):H1355–9.

    CAS  PubMed  Google Scholar 

  52. Stuart-Smith K. Demystified. Nitric oxide. Mol Pathol. 2002;55(6):360–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Mata-Greenwood E, Chen DB. Racial differences in nitric oxide-dependent vasorelaxation. Reprod Sci. 2008;15(1):9–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Quillon A, Fromy B, Debret R. Endothelium microenvironment sensing leading to nitric oxide mediated vasodilation: a review of nervous and biomechanical signals. Nitric Oxide. 2015;45:20–6.

    CAS  PubMed  Google Scholar 

  55. Chen KD, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem. 1999;274(26):18393–400.

    CAS  PubMed  Google Scholar 

  56. Kuhr F, et al. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors. Neuropeptides. 2010;44(2):145–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Wong BJ, Wilkins BW, Minson CT. H1 but not H2 histamine receptor activation contributes to the rise in skin blood flow during whole body heating in humans. J Physiol. 2004;560(Pt 3):941–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kamijo Y, Lee K, Mack GW. Active cutaneous vasodilation in resting humans during mild heat stress. J Appl Physiol (1985). 2005;98(3):829–37.

    Google Scholar 

  59. Dupont LL, et al. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases. Pulm Pharmacol Ther. 2014;29(1):1–6.

    CAS  PubMed  Google Scholar 

  60. Harraz OF, Brett SE, Welsh DG. Nitric oxide suppresses vascular voltage-gated T-type Ca2+ channels through cGMP/PKG signaling. Am J Physiol Heart Circ Physiol. 2014;306(2):H279–85.

    CAS  PubMed  Google Scholar 

  61. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991;88(11):4651–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Radomski MW, Palmer RM, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun. 1987;148(3):1482–9.

    CAS  PubMed  Google Scholar 

  63. Scherrer U, Sartori C. Defective nitric oxide synthesis: a link between metabolic insulin resistance, sympathetic overactivity and cardiovascular morbidity. Eur J Endocrinol. 2000;142(4):315–23.

    CAS  PubMed  Google Scholar 

  64. Keeble JE, Moore PK. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs. Br J Pharmacol. 2002;137(3):295–310.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Rauhala P, Andoh T, Chiueh CC. Neuroprotective properties of nitric oxide and S-nitrosoglutathione. Toxicol Appl Pharmacol. 2005;207(2 Suppl):91–5.

    PubMed  Google Scholar 

  66. Vaananen AJ, Kankuri E, Rauhala P. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain. Free Radic Biol Med. 2005;38(8):1102–11.

    PubMed  Google Scholar 

  67. de la Torre JC, Aliev G. Inhibition of vascular nitric oxide after rat chronic brain hypoperfusion: spatial memory and immunocytochemical changes. J Cereb Blood Flow Metab. 2005;25(6):663–72.

    PubMed  Google Scholar 

  68. Ricciardolo FL. Multiple roles of nitric oxide in the airways. Thorax. 2003;58(2):175–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(6):998–1005.

    CAS  PubMed  Google Scholar 

  70. Brunner H, et al. Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23(2):233–46.

    CAS  PubMed  Google Scholar 

  71. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(Pt 3):593–615.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Forstermann U, et al. Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol. 1995;50(9):1321–32.

    CAS  PubMed  Google Scholar 

  73. Fulton D, Gratton JP, Sessa WC. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther. 2001;299(3):818–24.

    CAS  PubMed  Google Scholar 

  74. Bui C, et al. Acute effect of a single high-fat meal on forearm blood flow, blood pressure and heart rate in healthy male Asians and Caucasians: a pilot study. Southeast Asian J Trop Med Public Health. 2010;41(2):490–500.

    PubMed Central  PubMed  Google Scholar 

  75. Yim J, et al. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians. Med Sci Monit. 2012;18(8):CR467–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol. 2007;42(2):271–9.

    CAS  PubMed  Google Scholar 

  77. Chen ZP, et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 1999;443(3):285–9.

    CAS  PubMed  Google Scholar 

  78. Haynes MP, Russell KS, Bender JR. Molecular mechanisms of estrogen actions on the vasculature. J Nucl Cardiol. 2000;7(5):500–8.

    CAS  PubMed  Google Scholar 

  79. Montagnani M, et al. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem. 2001;276(32):30392–8.

    CAS  PubMed  Google Scholar 

  80. Dimmeler S, et al. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ Res. 1998;83(3):334–41.

    CAS  PubMed  Google Scholar 

  81. Dimmeler S, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5.

    CAS  PubMed  Google Scholar 

  82. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation. 2003;108(16):1912–6.

    PubMed  Google Scholar 

  83. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation. 2003;108(17):2034–40.

    PubMed  Google Scholar 

  84. Forstermann U, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994;23(6 Pt 2):1121–31.

    CAS  PubMed  Google Scholar 

  85. Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533(1–3):222–39.

    CAS  PubMed  Google Scholar 

  86. Hare JM. Nitroso-redox balance in the cardiovascular system. N Engl J Med. 2004;351(20):2112–4.

    CAS  PubMed  Google Scholar 

  87. Kozak AJ, et al. Role of peroxynitrite in the process of vascular tone regulation by nitric oxide and prostanoids--a nanotechnological approach. Prostaglandins Leukot Essent Fat Acids. 2005;72(2):105–13.

    CAS  Google Scholar 

  88. Lenasi H, Strucl M. The effect of nitric oxide synthase and cyclooxygenase inhibition on cutaneous microvascular reactivity. Eur J Appl Physiol. 2008;103(6):719–26.

    CAS  PubMed  Google Scholar 

  89. Malty AM, Petrofsky J. The effect of electrical stimulation on a normal skin blood flow in active young and older adults. Med Sci Monit. 2007;13(4):CR147–55.

    PubMed  Google Scholar 

  90. Koeda T, et al. Substance P is involved in the cutaneous blood flow increase response to sympathetic nerve stimulation in persistently inflamed rats. J Physiol Sci. 2007;57(6):361–6.

    CAS  PubMed  Google Scholar 

  91. Lam FY, Ferrell WR. Acute inflammation in the rat knee joint attenuates sympathetic vasoconstriction but enhances neuropeptide-mediated vasodilatation assessed by laser Doppler perfusion imaging. Neuroscience. 1993;52(2):443–9.

    CAS  PubMed  Google Scholar 

  92. McDougall JJ, Karimian SM, Ferrell WR. Prolonged alteration of vasoconstrictor and vasodilator responses in rat knee joints by adjuvant monoarthritis. Exp Physiol. 1995;80(3):349–57.

    CAS  PubMed  Google Scholar 

  93. Donnerer J, et al. Upregulation, release and axonal transport of substance P and calcitonin gene-related peptide in adjuvant inflammation and regulatory function of nerve growth factor. Regul Pept. 1993;46(1–2):150–4.

    CAS  PubMed  Google Scholar 

  94. Stephens DP, et al. Neuropeptide Y antagonism reduces reflex cutaneous vasoconstriction in humans. Am J Physiol Heart Circ Physiol. 2004;287(3):H1404–9.

    CAS  PubMed  Google Scholar 

  95. Bradley E, et al. Effects of varying impulse number on cotransmitter contributions to sympathetic vasoconstriction in rat tail artery. Am J Physiol Heart Circ Physiol. 2003;284(6):H2007–14.

    CAS  PubMed  Google Scholar 

  96. Hashim MA, Tadepalli AS. Cutaneous vasomotor effects of neuropeptide Y. Neuropeptides. 1995;29(5):263–71.

    CAS  PubMed  Google Scholar 

  97. Toba K, et al. Improved skin blood flow and cutaneous temperature in the foot of a patient with arteriosclerosis obliterans by vasopressin V1 antagonist (OPC21268). A case report. Angiology. 1995;46(11):1027–33.

    CAS  PubMed  Google Scholar 

  98. Thompson CS, Kenney WL. Altered neurotransmitter control of reflex vasoconstriction in aged human skin. J Physiol. 2004;558(Pt 2):697–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. McLellan K, et al. The effects of skin moisture and subcutaneous fat thickness on the ability of the skin to dissipate heat in young and old subjects, with and without diabetes, at three environmental room temperatures. Med Eng Phys. 2009;31(2):165–72.

    PubMed  Google Scholar 

  100. Fromy B, Abraham P, Saumet JL. Non-nociceptive capsaicin-sensitive nerve terminal stimulation allows for an original vasodilatory reflex in the human skin. Brain Res. 1998;811(1–2):166–8.

    CAS  PubMed  Google Scholar 

  101. Garry A, et al. Cellular mechanisms underlying cutaneous pressure-induced vasodilation: in vivo involvement of potassium channels. Am J Physiol Heart Circ Physiol. 2005;289(1):H174–80.

    CAS  PubMed  Google Scholar 

  102. Montain SJ, Coyle EF. Fluid ingestion during exercise increases skin blood flow independent of increases in blood volume. J Appl Physiol (1985). 1992;73(3):903–10.

    CAS  Google Scholar 

  103. Coyle EF, Montain SJ. Benefits of fluid replacement with carbohydrate during exercise. Med Sci Sports Exerc. 1992;24(9 Suppl):S324–30.

    CAS  PubMed  Google Scholar 

  104. Petrofsky J, et al. Impact of hydrotherapy on skin blood flow: how much is due to moisture and how much is due to heat? Physiother Theory Pract. 2010;26(2):107–12.

    PubMed  Google Scholar 

  105. Petrofsky J, et al. Does skin moisture influence the blood flow response to local heat? A re-evaluation of the Pennes model. J Med Eng Technol. 2009;33(7):532–7.

    CAS  PubMed  Google Scholar 

  106. Petrofsky JS, et al. The effect of the moisture content of a local heat source on the blood flow response of the skin. Arch Dermatol Res. 2009;301(8):581–5.

    PubMed  Google Scholar 

  107. Petrofsky J, et al. The effect of moist air on skin blood flow and temperature in subjects with and without diabetes. Diabetes Technol Ther. 2012;14(2):105–16.

    PubMed  Google Scholar 

  108. Petrofsky J, et al. Dry heat, moist heat and body fat: are heating modalities really effective in people who are overweight? J Med Eng Technol. 2009;33(5):361–9.

    CAS  PubMed  Google Scholar 

  109. Lawson D, Petrofsky JS. A randomized control study on the effect of biphasic electrical stimulation in a warm room on skin blood flow and healing rates in chronic wounds of patients with and without diabetes. Med Sci Monit. 2007;13(6):CR258–63.

    PubMed  Google Scholar 

  110. Petrofsky JS, et al. The influence of local versus global heat on the healing of chronic wounds in patients with diabetes. Diabetes Technol Ther. 2007;9(6):535–44.

    PubMed  Google Scholar 

  111. Suh H, et al. A new electrode design to improve outcomes in the treatment of chronic non-healing wounds in diabetes. Diabetes Technol Ther. 2009;11(5):315–22.

    CAS  PubMed  Google Scholar 

  112. Petrofsky JS, et al. What is more damaging to vascular endothelial function: diabetes, age, high BMI, or all of the above? Med Sci Monit. 2013;19:257–63.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrold Scott Petrofsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Petrofsky, J.S. (2015). Control of Skin Blood Flow. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_169-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_169-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics