Skip to main content

Nuklearmedizinische Schmerztherapie bei Knochen- und Gelenkerkrankungen

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Praktische Schmerzmedizin

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Seit über sechs Jahrzehnten werden Radionuklide für die Schmerztherapie bei Knochen- und Gelenkerkrankungen eingesetzt. Dabei ist das Target bei malignen Knochenprozessen, besonders Knochenmetastasen, das überwiegend osteoblastische Knochengewebe, bei entzündlichen Gelenkerkrankungen dagegen die entzündete Synovialis. Eine hypertrophische und entzündete Synovialis ist bei zahlreichen Gelenkerkrankungen, wie der rheumatoiden Arthritis, Osteoarthritis, Spondylarthritis oder hämophilen Arthropathie, bereits in den Frühstadien die Ursache für eine Schmerzsymptomatik und rezidivierende Gelenkergüsse. Die nuklearmedizinische palliative Schmerztherapie bei malignen Knochentumoren, besonders bei überwiegend osteoblastischen Metastasen, stellt eine nebenwirkungsarme, ergänzende Behandlungsoption im Gesamtspektrum der Schmerztherapie dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Alavi M, Omidvari S, Mehdizadeh A et al (2015) Metastatic bone pain palliation using 177Lu-Ethylenediaminetetramethylene phosphoric acid. World J Nucl Med 14:109–115

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson PM, Wiseman GA, Dispenzieri A et al (2002) High-dose Samarium-153 ethylene diamine tetramethylene phosphophate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol 20:189–196

    Article  CAS  PubMed  Google Scholar 

  • Anderson PM, Aguilera D, Pearson M, Shaio W (2008) Outpatient chemotherapy plus radiotherapy in sarcomas: improving cancer control with radiosensitizing agents. Cancer Control 15:38–46

    Article  PubMed  Google Scholar 

  • Apolone G, Joppi R, Bertele V et al (2005) Ten years or marketing approvals of anticancer drugs in Europe: regulatory policy and guidance documents need to find a balance between different pressures. Br J Cancer 93:504–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf S, Mapp PI, Walsh DA (2011) Contributions of angiogenesis, joint damage and pain in a rat model of osteoarthritis. Arthritis Rheum 63(9):2700–2710

    Article  CAS  PubMed  Google Scholar 

  • Atkins HL, Mausner LF, Srivastava SC, Meinken GE et al (1995) Tin-117m(4+)-DTPA for palliation of pain from osseous metstases: a pilot study. J Nucl Med 36:725–729

    CAS  PubMed  Google Scholar 

  • Atkinson MJ, Spanner MT, Rosemann M et al (2005) Intracellular sequestration of 223Ra by the iron-storage protein ferritin. Radiat Res 164:230–233

    Article  CAS  PubMed  Google Scholar 

  • Averbuch SD (1993) New bisphosphonates in the treatment of bone metastases. Cancer Suppl 72:3443–3451

    Article  CAS  Google Scholar 

  • Baczyk M, Czepczynski R, Milecki P et al (2007) 89Sr versus 153Sm-EDTMP: comparison of treatment efficacy of painful bone metastases in prostate and breast carcinoma. Nucl Med Commun 28:245–250

    Article  PubMed  Google Scholar 

  • Banerjee SR, Pullambhatia M et al (2011) A modular strategy to prepare multivalent inhitors of prostate-specific membrane antigen (PSMA). Oncotarget 2:1244–1253

    Article  PubMed Central  PubMed  Google Scholar 

  • Baum RP, Kulkarni HR (2012) Theranostics: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy – the Bad Berka experience. Theranostics 2:437–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baum RP, Kulkarni HR, Albers P (2017) Theranostik. PSMA_Liganden für die molekulare Bildgebung und Radionuklidtherapie des fortgeschrittenen Prostatakarzinoms. Onkologe. https://doi.org/10.1007/s00761-017-0246.2

  • Baziotis N, Yakoumakis E, Zissimopoulos et al (1998) Strontium-89 chloride in the treatment of bone metatases from breast cancer. Oncology 55:377–381

    Article  CAS  PubMed  Google Scholar 

  • Berger M, Grignani G, Giostra A et al (2012) 153Samarium-EDTMP administration followed by hematopoietic stem cell support for bone metastases in osteosarcoma patients. Ann Oncol 23:1899–1905

    Article  CAS  PubMed  Google Scholar 

  • Blake GM, Zivanovic MA, AJB ME, Ackery DM (1986) Sr-89 therapy: strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med 12:447–454

    Article  CAS  PubMed  Google Scholar 

  • Bolger JJ, Dearnaley DP, Kirk D, Lewington VJ et al (1993) Strontium-89 (Metastron) versus external beam radiotherapy in patients with painful bone metatases secondary to prostate cancer: preliminary report of a multicente trial. Semin Oncol 20(Suppl 2):32–33

    CAS  PubMed  Google Scholar 

  • Bonnet CS, Walsh DA (2005) Osteoarthritis, Angiogenesis and Inflammation. Rheumatology (Oxford) 44(1):7–16

    Article  CAS  Google Scholar 

  • Bouchet LG, Bolch WE, Goddu SM et al (2000) Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions. J Nucl Med 41:682–687

    CAS  PubMed  Google Scholar 

  • Bräuer A, Rahbar K, Konnert J et al (2017) Diagnostic value of additional 68Ga-PSMA-PET before 223Ra-dichloride therapy of patients with metastatic prostate carcinoma. Nuklearmedizin 56:14–22

    Article  PubMed  Google Scholar 

  • Braun S, Vogl FD et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  CAS  PubMed  Google Scholar 

  • Brenner W, Kampen WU, Kampen AM, Henze E (2001) Skeletal uptake and soft tissue retention of 186-Re-HEDP and 153-Sm-EDTMP in patients with metastatic bone disease. J Nucl Med 42:231–236

    Google Scholar 

  • Brucer M (1990) A chronology of nuclear medicine. Heritage Publications, St. Louis

    Google Scholar 

  • Christensen MH, Petersen LJ (2012) Radionulcide treatment of painful bone metastases in patients with breast cancer: a systematic review. Cancer Treat Rev 38:164–171

    Article  CAS  PubMed  Google Scholar 

  • Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594

    Article  CAS  PubMed  Google Scholar 

  • Coleman RE, Smith P, Rubens RD (1998) Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 77:336–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das BK (2007) Role of radiosynovectomy in the treatment of rheumatoid arthritis and hemophilic arthropathies. Biomed Imaging Interv J 3:1–5

    Article  CAS  Google Scholar 

  • De la Corte-Rodriguez H, Rodriguez-Merchan EC, Jimenez-Yuste V (2011) Radiosynovectomy in hemophilia: quantification of ist effectiveness through the assessment of 10 articular parameters. J Thromb Haemost 9:928–935

    Article  PubMed  Google Scholar 

  • Deguchi T, Yang M, Ehara H et al (1997) Detection of micrometastatic prostate cancer cells in the bone marrow of patients with prostate cancer. Br J Cancer 75:634–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  CAS  PubMed  Google Scholar 

  • Elgazzar AH, Maxon HR (1993) Radioisotope therapy of cancer related bone pain. In: Limouris GS, Shukla SK (Hrsg) Radionuclides for therapy. Mediterra, Athen, S 111–116

    Google Scholar 

  • Ellis LM, Bernstein DS, Voest EE et al (2014) American Society of Clinical Oncology Perspective: raising the bar for clinical trials by defining clinically meaningful outcomes. J Clin Oncol 32:1278–1283

    Google Scholar 

  • Fischer M (1999) Leitlinie für die Radionuklidtherapie bei schmerzhaften Knochenmetastasen. Nuklearmedizin 38:270–272

    CAS  PubMed  Google Scholar 

  • Fischer M, Biersack H-J (2017) Radionuclide therapy of malignant bone lesions. Eur J Nucl Med Mol Imaging 44:728–729

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Kampen WU (2012a) Therapie mit offenen Radionukliden bei multilokulärer Skelettmetastasierung. Der Nuklearmediziner 35:186–191

    Article  Google Scholar 

  • Fischer M, Kampen WU (2012b) Radionucliude therapy of bone metastases. Breast Care 7:100–107

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer M, Brinker A, Sickmüller B (2015) Safety of medicines: detection and reporting adverse reactions. In: Kampen WU, Fischer M (Hrsg) Local treatment of inflammatory joint diseases. Springer, Heidelberg, S 1–27

    Google Scholar 

  • Fizazi K, Beuzeboc P, Lumbroso J et al (2009) Phase II trial of consolidation Docetaxel and Samarium-153 in patients with bone metastases from castration-resistent prostate cancer. J Clin Oncol 27:1–7

    Article  Google Scholar 

  • Fuster D, Herranz R, Vidal-Sicart S et al (2000) Usefulness of strontium-89 for bone pain palliation in metastatic breast cancer patients. Nucl Med Commun 21:623–626

    Article  CAS  PubMed  Google Scholar 

  • Galasko CSB (1982) Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop 169:20–27

    Article  Google Scholar 

  • Geldof AA, de Rooij L, Versteegh RT et al (1999) Combination 186-Re-HEDP and cisplatin supraadditive treatment effects in prostate cancer cells. J Nucl Med 40:667–671

    CAS  PubMed  Google Scholar 

  • Gent YYJ, ter Wee MM, Voskuyl AE (2015) Subclinical synovitis detected by macrophage PET, but not MRI, is related to short-term flare of clinical disease activity in early RA patients: an exploratory study. Arthritis Res Ther 17:200–271

    Article  CAS  Google Scholar 

  • Gerlinger M, Rowan AJ et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequency. N Engl J Med 366:883–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gillesen S, Omlin A, Attard G et al (2015) Management of patients with advanced prostate cancer: recommendations oft he St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 26:1589–1604

    Article  Google Scholar 

  • Goddu SM, Bishayee A, Bouchet LG et al (2000) Marrow toxicity of 33-P versus 32-P-orthophosphate: implication for therapy of bone pain and bone metastases. J Nucl Med 41:941–951

    CAS  PubMed  Google Scholar 

  • Gratz S, Göbel D, Becker W (2000) Radiosynoviorthese bei entzündlichen Gelenkerkrankungen. Orthopade 29:164–170

    CAS  PubMed  Google Scholar 

  • Henriksen G, Breistøl K, Bruland ØS, Fodstad Ø, Larsen RH (2002) Significant antitumor effect from bone-seeking, α-particle-emitting 223-Ra demonstrated in an experimental skeletal metastases model. Cancer Res 62:3120–3125

    CAS  PubMed  Google Scholar 

  • Henriksen G, Fisher DR, Roeske JC et al (2003) Targeting of osseous sites with α-emitting 223Ra: comparison with the β-emitter 89Sr in mice. J Nucl Med 44:252–259

    CAS  PubMed  Google Scholar 

  • Hicsonmez A, Kucuk ON, Nadrieu MN et al (2010) Role of radionuclide therapy as adjuvant to palliative external beam radiotherapy for painful skeletal metastasis. World J Oncol 1:158–166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hobbs R, McNutt T et al (2008) Combined internal radionuclide therapy (IRT) and external radiation therapy (XRT) treatment planning for 153Sm-EDTMP treatment of metastatic osteosarcoma. J Nucl Med 49(Suppl 1):47P

    Google Scholar 

  • Johnson LS, Yanch JC, Shortkoff S et al (1995) Beta-particle dosimetry in radiation synovectomy. Eur J Nucl Med 22:977–988

    Article  CAS  PubMed  Google Scholar 

  • Kampen WU, Brenner W, Kroeger S, Sawula JA, Bohuslavizki KH, Henze E (2001) Long-term results of radiation synovectomy: a clinical follow-up study. Nucl Med Commun 22:239–246

    Article  CAS  PubMed  Google Scholar 

  • Kasalický J, Kraská V (1998) The effect of repeated strontium-89 chloride therapy in bone pain palliation in patients with skeletal cancer metastases. Eur J Nucl Med 25:1362–1367

    Article  PubMed  Google Scholar 

  • Klerk JMH de (1995) Re-186-HEDP in treatment of metatatic bone disease: pharmakokinetics and toxocity. Ponson & Looigen, Wagenningen

    Google Scholar 

  • Klett R, Puille M, Matter HP et al (1999) R.Aktivitätsabtransport und Strahlenexposition durch die Radiosynoviorthese des Kniegelenkes: Einfluß unterschiedlicher Therapiemodalitäten. Z Rheumatol 58:207–212

    Article  CAS  PubMed  Google Scholar 

  • Kohno N, Aogi K, Minami H et al (2005) Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized placebo-controlled trial. J Clin Oncol 23:3314–3321

    Article  CAS  PubMed  Google Scholar 

  • Krasnow AZ, Hellman RS, Timins ME, Collier BD, Anderson T, Isitman AT (1997) Diagnostic bone scanning in oncology. Semin Nucl Med 27:107–141

    Article  CAS  PubMed  Google Scholar 

  • Krenn V, Morawitz L et al (2002) Grading of chronic synovitis – a histopathological grading system for molecular and diagnostic pathology. Pathol Res Pract 198:317–325

    Article  CAS  PubMed  Google Scholar 

  • Kresnik E, Mikosch P, Gallowitsch HJ et al (2002) Clinical outcome of radiosynoviorthesis: a meta-analysis including 2190 treated joints. Nucl Med Commun 23:683–688

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy GT, Krishnamurthy S (2000) Invited commentary: radionuclides for metastatic bone pain palliation: a need for rational re-evaluation in the new millenium. J Nucl Med 41:688–691

    CAS  PubMed  Google Scholar 

  • Lam MGEH, Dahmane A, Stevens WHM et al (2008) Combined use of zoledronic acid and 153 Sm-EDTMP in hormone-refractory prostate cancer patients with bone metastases. Eur J Nucl Med Mol Imaging 35:756–765

    Article  CAS  PubMed  Google Scholar 

  • Lam MGEH, de Klerk JMH, Zonnenberg BA (2009) Treatment of painful bone metastases in hormone- refractory prostate cancer with Zoledronic acid and Samarium-153-Ethylenediaminetetramethylphosphonic acid combined. J Palliat Med 12:649–651

    Article  PubMed  Google Scholar 

  • Lau WF, Hicks R, Binns D (2001) Differential effects of bisphosphonate on Paget’s disease and metastatic prostatic carcinoma bone scan findings. Clin Nucl Med 26:347–348

    Article  CAS  PubMed  Google Scholar 

  • Liepe K (2015) Radiosynovectomy in the therapeutic management of arthritis. World J Nucl Med 14:10–15

    Article  Google Scholar 

  • Liepe K, Franke W-G, Koch R et al (2000) Comparison of Rhenium-188, Rhenium-186 and Strontium-89 in palliation of painful bone metastases. Nuklearmedizin 39:146–151

    Article  CAS  PubMed  Google Scholar 

  • Loeb DM, Garrett-Mayer G, Hobbs RF et al (2009) Dose-finding study of 153Sm-EDTMP in patients with poor-prognosis osteosarcoma. Cancer 115:2514–2522

    Article  CAS  PubMed  Google Scholar 

  • Loeb DM, Hobbs RF, Okoli A et al (2011) Tandem dosing of Samarium-153 ethylenediamine tetramethylene phosphoric acid with stem cell support for patients with high-risk osteosarcoma. Cancer 116:5470–5478

    Article  Google Scholar 

  • Marcus CS, Saeed S, Mlikotic A, Mishkin F, Pham HL, Javellana T, Diestelhorst S, Minami C (2002) Lack of effect of a bisphosphonate (pamidronate disodium) infusion on subsequent skeletal uptake of Sm-153-EDTMP. Clin Nucl Med 27:427–430

    Article  PubMed  Google Scholar 

  • Markou P, Chatzopoulos D (2009) Yttrium-90 silicate radiosynovectomy treatment of painful synovitis in knee oesteoarthritis. Results of 9 months. Hell J Nucl Med 12:33–36

    PubMed  Google Scholar 

  • Mathé D, Balogh L, Polyák A et al (2010) Multispecies animal investigation on biodistribution, pharmacokinetics and toxicity of 177Lu-EDTMP, a potential bone pain palliation agent. Nucl Med Biol 73:215–226

    Article  CAS  Google Scholar 

  • Mathiessen A, Conaghan PG (2017) Synovitis in osteoarthritis: current understandimg with therapeitic implications. Arthritis Res Ther 19:18–26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maxon HR, Deutsch EA, Thomas SR, Libson K (1988) Re-186 (Sn) HEDP for treatment of multiple metastatic foci in bone: human biodistribution and dosimetric studies. Radiology 166:501–507

    Article  CAS  PubMed  Google Scholar 

  • McEwan AJB (1994) Palliation of bone pain. In: IPC M, Ell PJ (Hrsg) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingston, Edinburgh, S 877–892

    Google Scholar 

  • McEwan AJB et al (1994) A retrospective analysis of the cost effectiveness of treatment with Metastron in patients with prostate cancer metastatic to bone. Eur J Urol 26(Suppl 1):26–31

    Article  Google Scholar 

  • Nilsson S (2016) Radionuclide therapies in prostate cancer: integrating Raddium-223 in the treatment of patients with metastatic castration-resistant prostate cancer. Curr Oncol Rep 18:14ff

    Article  CAS  Google Scholar 

  • Nilsson S, Larsen RH, Fossa SD et al (2005) First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res 11:4451–4459

    Article  CAS  PubMed  Google Scholar 

  • Nilsson S, Strang P, Aksnes AK et al (2012) A randomized, dose-response, multicenter phase II study of radium-223-chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur J Cancer 48:678–686

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan JM, McCready BM, Flux G et al (2002) High activity Rhenium-186-HEDP with autologous peripheral blood stem cell rescue: a phase I study in progressive hormone refractory prostate cancer metastatic to bone. J Nucl Med 43(Suppl 316) (abstr.)

    Google Scholar 

  • Palmedo H, Manka-Waluch A, Albers P et al (2003) Repeated bone-targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188 hydroxyethylidenediphosphonate. J Clin Oncol 21:2869–2875

    Article  CAS  PubMed  Google Scholar 

  • Parker C, Nilsson S, Heinrich D et al (2012) Updated analysis of the phase III, double-blind, randomized, multinational study of radium-223 chloride in castration-resistant prostate cancer (CRPC) patients with bone metastases. J Clin Oncol 30(Suppl).: Abstr LBA4512

    Google Scholar 

  • Parker C, Nilsson S, Heinrich D et al (2013a) Alpha emitter Radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213–223

    Article  CAS  PubMed  Google Scholar 

  • Parker C, Pascoe S, Chodacki A et al (2013b) A randomized, double-blind, dose-finding, multicenter, phase II study od radium chloride (Ra 223) in patients with bone metastases and castration-resistant prostate cancer. Eur Urol 63:189–197

    Article  CAS  PubMed  Google Scholar 

  • Paulus P (1995) Re-186-HEDP in routine use: correlation between dose rate measurements and clinical efficacy. Update 1:17–20

    Google Scholar 

  • Pecher C (1942) Biological investigations with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of metastatic bone cancer. Univ Calif Publ Pharmacol 2:117–149

    CAS  Google Scholar 

  • Pons F, Herranz R, Garcia A, Vidal-Sicart S, Conill C, Grau JJ, Alcover J, Fuster D, Setoain J (1997) Strontium-89 for palliation of pain from bone metastases in patients with prostate and breast cancer. Eur J Nucl Med 24:1210–1214

    Article  CAS  PubMed  Google Scholar 

  • Porter AT, McEwan AJB, Powe JE, Reid R et al (1993) Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local external beam irradiation in the managemant of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys 25:805–813

    Article  CAS  PubMed  Google Scholar 

  • Rahbar K, Ahmadzadehfar H, Kratochwil C et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med Mol Imaging 58:85–90

    CAS  Google Scholar 

  • Ranjbar H, Brahrami-Samani A, Beiki D et al (2016) Development of 153Sm/177Lu-EDTMP as a possible therapeutic complex. Iran J Nucl Med 25:11–16

    Google Scholar 

  • Roodman GD (1997) Mechanisms of bone lesions in multiple myeloma and lymphoma. Cancer 80:1557–1514

    Article  CAS  PubMed  Google Scholar 

  • Roqué i Figuls M, Martinez-Zapata MJ, Alonso-Coello P et al (2008) Radioisotopes for metastatic bone pain (review). Cochrane Libr 4:1–32

    Google Scholar 

  • Rosen LS, Gordon D, Kaminski M et al (2003) Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast cancer – a randomized, double-blind multicenter trial. Cancer 98:1735–1744

    Article  CAS  PubMed  Google Scholar 

  • Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51:249–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schäfer M, Bauder-Wüst U et al (2012) A dimerized urea-based inhibitor of the prostatie-specific membrane antigen for 68Ga-PET imaging of prostate cancer. Eur J Nucl Med Mol I 2:23

    Google Scholar 

  • Schoeffel D, Bastian L et al (2010) Metastasen der Wirbelsäule – eine interdisziplinäre Herausforderung. J Onkol 7(Sonderdruck):1–6

    Google Scholar 

  • Sciuto R, Tofani A, Festa A et al (2000) Short- and long-term effects of 186-Re-1,-hydroxyethylidene diphosphonate in the treatment of painful bone metastases. J Nucl Med 41:647–654

    CAS  PubMed  Google Scholar 

  • Sciuto R, Festa A, Rea S et al (2002) Effects of low-dose Cisplatin on 89-Sr therapy for painful bone metastases from prostate cancer: a randomized clinical trial. J Nucl Med 43:79–86

    CAS  PubMed  Google Scholar 

  • Serafini AN (2000) Samarium Sm-153 Lexidronam for the palliation of bone pain associated with metastases. Cancer 88(Suppl):2034–2039

    Google Scholar 

  • Serafini AN (2001) Therapy of metstatic bone pain. J Nucl Med 42:895–906

    CAS  PubMed  Google Scholar 

  • Shinto AS, Shibu D, Coimbatore KMCH et al (2014) 177Lu-EDTMP for treatment of bone pain in patients with disseminated skeletal metastases. https://doi.org/10.2967/jnmt.113.132266

    Article  PubMed  Google Scholar 

  • Shore ND (2015) Radium-223 dichloride for metastatic castration-resistant prostate cancer: the urologist’s perspective. Urology 85:717–724

    Article  PubMed  Google Scholar 

  • Silva M, Luck JV Jr (2004) Chronic hemophilic synovitis: the role of radiosynovectomy. Hemophilia 10(Suppl):1–10

    Google Scholar 

  • Singh A, Holmes RA, Farhangi M, Volkert WA (1989) Human pharmacokinetics of Samarium-153 EDTMP in metastatic cancer. J Nucl Med 30:1814–1818

    CAS  PubMed  Google Scholar 

  • Sinzinger H, Palumbo B, Özker K (2011) The Vienna protocol and perspectives in radionuclide therapy. Q J Nucl Med Mol Imaging 55:420–430

    CAS  PubMed  Google Scholar 

  • Soerdjbalie-Maikoe V, Pelger RCM, Lycklama á NGAB et al (2002) Strontium-89 (Metastron) and the bisphosphonate olpadronate reduce the incidence of spinal cord compression in patients with hormone-refractory prostate cancer metastatic to the skeleton. Eur J Nucl Med 29:494–498

    Article  CAS  Google Scholar 

  • Szentesi M, Berkes (2006) Histological and morhological changes after 90Y isotope treatment in chronic synovitis. Eur J Nucl Med Mol Imaging 33(Suppl):328

    Google Scholar 

  • Tannock I, Gospodarowicz M, Meakin W, Panzarella T, Stewart L, Rider W (1989) Treatment of metastatic cancer with low-dose prednisone: evaluation of pain and quality of life as pragmatic indices of response. J Clin Oncol 7:590–597

    Article  CAS  PubMed  Google Scholar 

  • Tomblyn M (2012) The role of bone-seeking radionulides in the palliative treatment of patients with painful osteoblastic skeletal metastases. Cancer Control 19:137–144

    Article  CAS  PubMed  Google Scholar 

  • Tu SM, Delpass ES, Jones D et al (1996) Strontium-89 combined with doxorubicin in the treatment of patients with androgen independent prostate cancer. Urol Oncol 2:191–197

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2004) Cancer drug approval endpoints. www.fda.gov/Drugs/Development/Appoval/Process/DevelopmentResources/CancerDrugs/ucm094586.htm

  • Valicenti RK, Trabulsi E, Intenzo C et al (2011) A phase I trial of samarium-153-Lexidronam complex for treatment of clinically nonmetastatic high-risk prostate cancer: first report of a complete study. IJROBP 79:732–737

    CAS  Google Scholar 

  • Wagner G (1984) Frequency of pain in patients with cancer. Recent Results Cancer Res 89:64–71

    Article  CAS  PubMed  Google Scholar 

  • Wood DP, Banks ER, Humphreys S, Rangnekar VM (1994) Sensitivity of immunohistochemistry and polymerase chain reaction in detecting prostate cancer cells in bone marrow. Z Histochem Cytochem 42:505–511

    Article  CAS  Google Scholar 

  • World Health Organisation (1990) Cancer pain relief and palliative care. WHO Tech Rep Ser 804:7–73

    Google Scholar 

  • Zuderman L, Liepe K et al (2008) Radiosynoviorthesis (RSO): influencing factors and therapy monitoring. Ann Nucl Med 22:735–741

    Article  PubMed  Google Scholar 

  • Zyskowski A, Lamb D, Morum P et al (2001) Strontium-89 treatment for prostate cancer bone metastases: does a protate specific antigen response predict for improved survival? Australas Radiol 45:39–42

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fischer, M., Czech, N., Kampen, W.U. (2019). Nuklearmedizinische Schmerztherapie bei Knochen- und Gelenkerkrankungen. In: Baron, R., Koppert, W., Strumpf, M., Willweber-Strumpf, A. (eds) Praktische Schmerzmedizin. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54670-9_45-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54670-9_45-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54670-9

  • Online ISBN: 978-3-642-54670-9

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nuklearmedizinische Schmerztherapie bei Knochen- und Gelenkerkrankungen
    Published:
    31 January 2019

    DOI: https://doi.org/10.1007/978-3-642-54670-9_45-2

  2. Original

    Nuklearmedizinische Schmerztherapie bei Knochen- und Gelenkerkrankungen
    Published:
    24 October 2018

    DOI: https://doi.org/10.1007/978-3-642-54670-9_45-1