Skip to main content
Log in

Sr-89 therapy: Strontium kinetics in disseminated carcinoma of the prostate

  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Strontium kinetics were investigated in a group of 14 patients receiving 89Sr palliation for metastatic bone disease secondary to prostatic carcinoma. Using 85Sr as a tracer, total body strontium retention R(t) was monitored for a 3 month period following 89Sr administration, and at 90 days was found to vary from 11% to 88% and to correlate closely with the fraction of the skeleton showing scintigraphic evidence of osteoblastic metastatic involvement. Strontium renal plasma clearance varied from 1.6 l/day to 11.6 l/day, and in nine patients was significantly reduced compared with values found in healthy adult men, probably due to increased renal tubular reabsorption associated with the disturbance of calcium homoeostasis. Renal clearance rate was the principal factor determining R(t) for t<6 days, and was an important secondary factor at later times. Over the interval 30 days t<90 days, R(t) was closely fitted by the power law function R(t)=R 30 (t/30)-b, with R 30 and b showing the close correlation expected from the effect of R(t) on strontium recycling. The correction of the data for this effect to determine the true skeletal release rate is described. Measurement of localized strontium turnover in individual metastatic deposits from whole body profiles and scintigraphic images gave retention curves that typically rose to a plateau by 10 days after therapy, and then decreased very slowly. In contrast, retention curves for adjacent normal trabecular bone showed more rapid turnover, peaking at 1 day and subsequently decreasing following a t-0.2 power law function. The changes in strontium kinetics found in metastatic bone disease are favourable to the objectives of 89Sr therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop M, Harrison GE, Raymond WHA, Sutton A, Rundo J (1960) Excretion and retention of radioactive strontium in normal men following a single intravenous injection. Int J Rad Biol 2:125–142

    CAS  Google Scholar 

  • Cohn SH, Spencer H, Samachson J, Robertson JS (1962) The turnover of strontium-85 in man as determined by whole-body counting. Rad Res 17:173–185

    Article  CAS  Google Scholar 

  • Comar CL (1967) Some principles of strontium metabolism: implications, applications, limitations. In: Lenihan JMA, Loutit JF, Martin JH (eds) Strontium Metabolism. Academic Press, London, pp 17–31

    Google Scholar 

  • Firusian N, Mellin P, Schmidt CG (1976) Results of strontium-89 therapy in patients with carcinoma of the prostate and incurable pain from bone metastases: a preliminary report. J Urol 116:764–768

    Article  CAS  Google Scholar 

  • Harrison GE, Raymond WHA, Tretheway HC (1955) The metabolism of strontium in man. Clin Sci 14:681–695

    CAS  PubMed  Google Scholar 

  • Harrison GE, Sutton A (1967) Ratio of the faecal to urinary clearance of strontium in man. In: Lenihan JMA, Loutit JF, Martin JH (eds) Strontium Metabolism. Academic Press, London, pp 161–166

    Google Scholar 

  • ICRP (1979) Metabolic data for strontium. In: ICRP Publication 30: Limits for intakes of radionuclides by workers, Part 1. Pergamon Press, Oxford, pp 77–78

    Google Scholar 

  • Likhtarev IA, Dobroskok IA, Ilyin LA, Krasnoschekova GP, Likhtareva TM, Smirnov BI, Sobolev EP, Shamov VP, Shapiro EL (1975) A study of certain characteristics of strontium metabolism in a homogeneous group of human subjects. Health Phys 28:49–60

    Article  CAS  Google Scholar 

  • Ludwig GD (1962) Hypocalcaemia and hypophosphataemia accompanying osteoblastic osseous metastases: studies of calcium and phosphate metabolism and parathyroid function. Ann Int Med 56:676–677 (abstr)

    Article  Google Scholar 

  • Marshall JH, Lloyd EL, Rundo J, Liniecki J, Marroti G, Mays CW, Sissons HA, Snyder WS (1973) Alkaline earth metabolism in adult man. Health Phys 24:125–221

    Article  Google Scholar 

  • McEwan AJ, Zivanovic MA, Blake GM, Buchanan RB, Ackery DM (1986) Sr-89 Therapy: clinical response in metastatic bone discase. Nucl Med Commun 7:293 (abstr)

    Google Scholar 

  • Mundy GR, Ibbotson KJ, D'Souza SM, Simpson EL, Jacobs JW, Martin TJ (1984) The hypercalcemia of cancer. N Engl J Med 310:1718–1727

    Article  CAS  Google Scholar 

  • Pecher C (1942) biological investigations with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of bone cancer. University of California Publications in Pharmacology 11:117–149

    Google Scholar 

  • Percival RC, Urwin GH, Watson ME, Harris S, Yates AJP, Williams JL, Beneton M, Kanis JA (1986) Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol (in press)

  • Ralston S, Fogelman I, Gardner MD, Boyle IT (1982) Hypercalcaemia and metastatic bone disease: is there a causal link? Lancet II:903–905

    Article  Google Scholar 

  • Ralston SH, Fogelman I, Gardner MD, Dryburgh FJ, Cowan RA, Boyle IT (1984) Hypercalcaemia of malignancy: evidence for a non-parathyroid humoral agent with an effect on renal tubular handling of calcium. Clin Sci 66:187–191

    Article  CAS  Google Scholar 

  • Raskin P, McClain CJ, Medsger TA (1973) Hypocalcemia associated with metastatic bone disease. Arch Intern Med 132:539–543

    Article  CAS  Google Scholar 

  • Reeve J, Hesp R (1976) A model-independent comparison of the rates of uptake and short term retention of 47Ca and 85Sr in the skeleton. Calcif Tissue Res 22:183–189

    Article  CAS  Google Scholar 

  • Reeve J, Wootton R, Hesp R (1976a) A new method for calculating the accretion rate of bone calcium and some observations on the suitability of strontium-85 as a tracer for bone calcium. Calcif Tissue Res 20:121–135

    Article  CAS  Google Scholar 

  • Reeve J, Hesp R, Wootton R (1976b) A new tracer method for the calculation of rates of bone formation and breakdown in osteoporosis and other generalised skeletal disorders. Calcif Tissue Res 22:191–206

    Article  CAS  Google Scholar 

  • Robinson RG (1986) Radionuclides for the alleviation of bone pain in advanced malignancy. Clinics in Oncology Volume 5/ Number 1:39–49

    Google Scholar 

  • Schulert AR, Peets EA, Laszlo D, Spencer H, Charles M, Samachson J (1959) Comparative metabolism of strontium and calcium in man. Int J Applied Radiation and Isotopes 4:144–153

    Article  CAS  Google Scholar 

  • Shimmins J, Smith DA, Nordin BEC, Burkinshaw L (1967) A comparison between calcium-45 and strontium-85 absorption, excretion and skeletal uptake. In: Lenihan JMA, Loutit JF, Martin JH (eds) Strontium Metabolism. Academic Press, London, pp 149–159

    Google Scholar 

  • Smallridge RC, Wray HL, Schaaf M (1981) Hypocalcemia with osteoblastic metastases in a patient with prostate carcinoma. A cause of secondary hyperparathyroidism. Am J Med 71:184–188

    Article  CAS  Google Scholar 

  • Spencer H, Li M, Samachson J, Laszlo D (1960) Metabolism of strontium-85 and calcium-45 in man. Metabolism 9:916–925

    CAS  Google Scholar 

  • Sudell CJ, Blake GM, Gossage AAR, Cullen DR, Munro DS (1985) Adrenal scintigraphy with 75Se selenonorcholestenol: a review. Nucl Med Commun 6:519–527

    Article  CAS  Google Scholar 

  • Tothill P, Smith MA, Cohn SH (1983) Whole-body and part-body turnover of 85Sr in Paget's disease. Phys Med Biol 28:149–159

    Article  CAS  Google Scholar 

  • Urwin GH, Percival RC, Galloway J, Guilland-Cumming DF, Lawson-Matthew PJ, Williams JL, Kanis JA (1986) endocrinology of disseminated prostatic carcinoma. Bone and Tooth Society, Spring Meeting April 1986 (abstract to be published in Bone)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, G.M., Zivanovic, M.A., McEwan, A.J. et al. Sr-89 therapy: Strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med 12, 447–454 (1986). https://doi.org/10.1007/BF00254749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00254749

Key words

Navigation